Курсовая работа: Методы расчета цифровых БИХ-фильтров и вид целевой функции
· алгебраическое сложение.
Реализация выражения (1) с малыми погрешностями, не зависящими от температуры, влажности и т.д., возможна только с помощью цифрового устройства.
Цифровое устройство, реализующее алгоритм (1), называется цифровым фильтром. В таких фильтрах входной и выходной сигналы являются цифровыми, представленными двоичными кодами. Поскольку при цифровом представлении сигналов xn , yn и коэффициентов aj и bl используется конечное число двоичных разрядов, вычисления по алгоритму (1) происходит с погрешностью. Строго говоря, цифровые фильтры представляют собой нелинейные устройства, к которым не применимы методы анализа и синтеза линейных систем. Однако количество разрядов в кодах, как правило, настолько велико, что погрешностью представления указанных величин в цифровой форме можно пренебречь и при анализе считать их точными, то есть представленными бесконечным числом двоичных разрядов. Конечность числа разрядов обычно учитывается при определении точности цифровых фильтров.
Существуют цифровые фильтры двух классов:
· рекурсивные;
· нерекурсивные.
Если в выражении (1) хотя бы один из коэффициентов aj не равен нулю, то реализуемый цифровой фильтр называется рекурсивным. Если же в выражении (1) все коэффициенты aj равны нулю, то есть то фильтр, реализующий этот алгоритм, называется нерекурсивным.
(2)
Нерекурсивный фильтр является устройством без обратной связи, а рекурсивный фильтр – устройством с обратной связью. Нерекурсивный фильтр принято называть фильтром с конечной импульсной характеристикой (КИХ-фильтр), а рекурсивный фильтр - фильтром с бесконечной импульсной характеристикой (БИХ-фильтр).
Так как в курсовой работе рассматривается синтез БИХ-фильтра, то в дальнейшем будем рассматривать только фильтры данного типа.
Анализ свойств цифровых фильтров производится в рамках теории z-преобразования, которое имеет такое же значение, как теория преобразования Лапласа при изучении аналоговых фильтров.
Передаточной функцией H(z) фильтра называется отношение z-образа выходного сигнала {yn } к z-образу входного сигнала {xn } при нулевых начальных условиях:
(3)
Применив к выражению (1) z-преобразование и учтя нулевые начальные условия у-М =у-М+1 =…=у-1 =х- N =х- N +1 =…=x-1 =0, получим передаточную функцию рекурсивного цифрового фильтра:
(4)
Выражение (3) можно преобразовать к следующему виду:
(5)
Где
Y(z) – z-образ вспомогательного дискретного сигнала {yn }. Из этих соотношений видно, что алгоритм работы фильтра можно задать в виде системы разностных уравнений вместо одного уравнения:
(6)
Первое уравнение соответствует передаточной функции H1 (z), а второе – передаточной функции H2 (z).
Формы реализации рекурсивного цифрового фильтра, построенные на основании формул (1) и (5), называются прямой и канонической соответственно.
Обычно рекурсивные фильтры большого порядка (при большом М) в прямой и рекурсивной формах не реализуют, так как при этом наблюдается значительный уровень шумов на выходе, обусловленных конечной разрядностью кодов, циркулирующих в фильтре. Поэтому фильтры большого порядка реализуют в виде совокупности отдельных звеньев, каждое из которых соответствует простому разностному уравнению. Универсальным, пригодным для построения любых фильтров, является биквадратный блок с передаточной функцией
фильтр синтез передаточная функция
, (7)
где и - постоянные коэффициенты.