Курсовая работа: Методы расчета цифровых БИХ-фильтров и вид целевой функции

Введение

1. Основные понятия о передаточных функциях БИХ-фильтров

2. Структурная схема БИХ-фильтра

3. Методы расчета цифровых БИХ-фильтров и вид целевой функции

4. Описание метода синтеза фильтра

5. Результаты синтеза

Выводы

Список используемой литературы

Введение

Непрерывно развивающаяся цифровая техника, увеличение скорости вычислений и номенклатуры выполняемых операций приводит к широкому внедрению различных методов цифровой обработки сигналов в радиоэлектронных системах. Применение этих методов позволяет во многих случаях использовать для обработки сигналов точные оптимальные алгоритмы. Такие алгоритмы были получены уже давно, исходя из статистических свойств сигналов и шумов, но их реализация в аналоговом виде была невозможна. Область применения цифровых методов неуклонно расширяется и одной из основных является цифровая фильтрация.

Фильтрацией называется процесс изменения частотного спектра сигнала в некотором желаемом направлении. Этот процесс может привести к усилению или ослаблению частотных составляющих в некотором диапазоне частот. К подавлению или выделению какой-либо частотной составляющей и т.п. Фильтрация нашла многочисленные применения, например, для подавления шума, маскирующего сигнал, для устранения искажения сигнала, для разделения двух или более различных сигналов, для разложения сигналов на частотные составляющие, для демодуляции сигналов, для преобразования дискретных сигналов в аналоговые, для ограничения полосы частот, занимаемой сигналами.

Любой аналоговый сигнал, ограниченный по частоте, можно преобразовать в дискретный, используя теорему Котельникова, проквантовать его и, получив цифровой сигнал, подвергнуть его цифровой фильтрации. Использование цифровых фильтров обусловлено следующими их преимуществами по сравнению с аналоговыми:

1. Возможность реализации фильтров с любыми импульсными и частотными характеристиками в пределах полосы частот, обеспечиваемой преобразователями АЦП и арифметических устройств. При этом можно построить устройства, реализация которых в аналоговом виде невозможна.

2. Отсутствие негативных факторов (инерционность энергоемких элементов, влияние паразитных связей между отдельными узлами, несогласование узлов по входному сопротивлению).

3. Повторяемость характеристик.

4. Высокая точность воспроизведения операторов преобразования и стабильность характеристик.

5. Нечувствительность к изменениям внешних условий.

6. Высокая надежность в работе.

7. Возможность диагностики и самодиагностики.

8. Модернизация в процессе эксплуатации.

9. Простота осуществления устройств памяти.

10. Малые габариты и вес.


1. Основные понятия о передаточных функциях БИХ-фильтров

Дискретным фильтром называется устройство, точно реализующее следующий алгоритм:

где ) и ) – n-е отсчеты входного и выходного сигналов фильтра соответственно, а aj и bl – коэффициенты. Выражение (1) представляет собой разностное уравнение.

Если коэффициенты aj и bl зависят только от текущего индекса n (то есть являются функция времени) и не зависят от значений {xn } и {yn }, то фильтр называется линейным импульсным фильтром, а уравнение (1) – линейным разностным уравнением. Если же aj и bl - просто постоянные коэффициенты, то фильтр называется линейным инвариантным во времени дискретным фильтром, а (1) – линейным разностным уравнением с постоянными коэффициентами.

Для вычисления yn при n=0,1,2,3, необходимо задать начальные условия – значения y(-Дt), y(-2Дt),..., y(-MДt) и значений x(-Дt), x(-2Дt), ,x(-MДt). В дальнейшем предполагается, что заданы нулевые начальные условия.

Из выражения (1) видно, что для вычисления выходных отсчетов фильтра необходимо выполнять лишь три операции:

· задержку (запоминание) N и M отсчетов соответственно входного и выходного сигналов;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 408
Бесплатно скачать Курсовая работа: Методы расчета цифровых БИХ-фильтров и вид целевой функции