Курсовая работа: Межа послідовності. Теорема Штольца

чисельник якої є сума всіх чисельників, написаних вище дробів, а знаменник - сума всіх знаменників. Отже, при n > N

запишемо тотожність

звідки

.

Другий доданок праворуч, як ми бачили вище, при n > N стає < .

Перший же доданок, через те, що, також буде < , скажемо, для n > N . Якщо при цьому взяти N > N, то для n > N очевидно

,

що й доводить наше твердження.

Випадок нескінченної межі приводиться до вище розглянутого. Нехай, наприклад,

Звідси, насамперед, випливає, що (для досить більших n)

отже, разом з уn і , причому варіанта хп зростає зі зростанням номера п. У такому випадку, доведену теорему можна застосувати до зворотного відношення :

(тому що тут межа вже кінцева), звідки й треба, що

,

що й було потрібно довести.

5. Приклади на застосування теореми "Штольца"

1. Обчислити

Установимо одну допоміжну нерівність (нерівність Як. Бернуллі):

якщо п - натуральне число, більше одиниці, і ?>1, те

(*)

Дійсно, поклавши ? =1+?, де ? > 0, по формулі Бінома Ньютона будемо мати:

тому що ненаписані члени позитивні, те

,

що рівносильне нерівності (*).

К-во Просмотров: 343
Бесплатно скачать Курсовая работа: Межа послідовності. Теорема Штольца