Курсовая работа: Межа послідовності. Теорема Штольца
.
Тому що для n > 2, мабуть, , те остаточно,
При k = 1, одержуємо відразу
так що
Тому що цей результат вірний при будь-якому а > 1, те, взявши k > 1, можемо затверджувати (принаймні, для досить більших n)
так що
(а > 1).
Доведений, таким чином, для k = 1, цей результат тим більш буде вірний і для k < 1.
Цей результат за допомогою теореми Штольца виходить відразу
2. Застосуємо теорему Штольца до доказу наступної цікавої пропозиції (Коші):
Якщо варіанта ап має межа (кінцева або нескінченний), то та ж межа має й варіанта
(«середнє арифметичне» перших п значень варіанти ап ).
Дійсно, думаючи по теоремі Штольца
маємо:
Наприклад, якщо ми знаємо, що , те й
3. Розглянемо тепер варіанту (уважаючи до - натурального)
,
яка представляє невизначеність виду .
Думаючи в теоремі Штольца