Курсовая работа: Моделювання поведінки клієнта страхової компанії
Насамперед кілька зауважень щодо системи цінностей потенційного клієнта. Найбільш вагомою для нього буде втрата останніх одиниць його активу (кожна одиниця серед останніх п’яти важить 20 ютилів). Далі вагомість втрат зменшується. В таблиці 1 наведена корисність багатства потенційного клієнта.
Табл.1. Корисність залишку активу після страхового випадку (згідно з граничною корисністю(1)) | Табл.2. Обсяг страхування та сподівана корисність (=0,0001, =0,001 ) | |||
Величина активу (х) (в тис.) | Гранична корисність (МU) | Корисність (u(x)) | Обсяг страхування | Сподівана корисність |
0 | 20 | 0 | 0 | 179,9820 |
1 | 20 | 20 | 1 | 179,9830 |
2 | 20 | 40 | 2 | 179,9840 |
3 | 20 | 60 | 3 | 179,9850 |
4 | 20 | 80 | 4 | 179,9860 |
5 | 20 | 100 | 5 | 179,9870 |
6 | 10 | 110 | 6 | 179,9870 |
7 | 10 | 120 | 7 | 179,9870 |
8 | 10 | 130 | 8 | 179,9870 |
9 | 10 | 140 | 9 | 179,9870 |
10 | 10 | 150 | 10 | 179,9870 |
11 | 5 | 155 | 11 | 179,9865 |
12 | 5 | 160 | 12 | 179,9860 |
13 | 5 | 165 | 13 | 179,9855 |
14 | 5 | 170 | 14 | 179,9850 |
15 | 5 | 175 | 15 | 179,9845 |
16 | 1 | 176 | 16 | 179,9836 |
17 | 1 | 177 | 17 | 179,9827 |
18 | 1 | 178 | 18 | 179,9818 |
19 | 1 | 179 | 19 | 179,9809 |
20 | 1 | 180 | 20 | 179,9800 |
Очевидно, що функція корисності клієнта є увігнутою, тобто він не схильний до ризику. Для нього найбільш вагомими є останні одиниці втрати активу після страхового випадку.
Порівняємо добробут клієнта за відсутності страхування та у випадку, коли він страхує перші одиниці активу.
Якщо клієнт не страхується зовсім, то він матиме, як і раніше, актив обсягом 20 000 за відсутності страхового випадку, та нічого, якщо страховий випадок трапиться. З точки зору корисності, він матиме 180 ютилів (див. табл.1) з імовірністю 0,9999 та нічого з імовірністю 0,0001. Сподівана корисність становитиме:
0,9999 х 180 + 0,0001 х 0 = 179,982.
Якщо клієнт страхує 4 000, то у разі відсутності страхового випадку то у нього залишається:
20 000 – 4 000 х 0,001 = 19,996,
а в разі страхового випадку – 4 000 гривень, корисність першої суми згідно з табл.1., становитиме 179,996, другої – 80. Звідси, сподівана корисність дорівнюватиме
179,996 х 0,9999 + 80 х 0,0001 = 179,986.
Таким чином, для особи з функцією корисності, яка відображена в таблиці 1 та на рис.1 страхування обсягом 4 000 є більш привабливим порівняно з випадком коли особа взагалі не страхується.
В табл.2 та на рис.2 відображені результати аналогічних розрахунків для всіх можливих варіантів страхування з дискретністю 1 000. ,
Здійснені розрахунки показують, що діапазон від 5 000 до 10 000 містить найпривабливіший обсяг страхування для клієнта.
Закон спадаючої граничної сподіваної корисності
Рис.5. свідчить про увігнутість функції сподіваної корисності для клієнта незалежно від обсягу страхування. Цей факт можна перефразувати в термінах граничної сподіваної корисності. Дано таке означення:
Граничною сподіваною корисністю називається приріст сподіваної корисності у разі збільшення обсягу страхування на одиницю (малу).
Увігнутість функції сподіваної корисності свідчить про дію в даному випадку закону спадаючої граничної корисності. В табл.3 та на рис.6. відображена дія цього закону.
Табл.3.Гранична сподівана корисність
Обсяг страхування | Гранична сподівана корисність |
0 | 0,0010 |
1 | 0,0010 |
2 | 0,0010 |
3 | 0,0010 |
4 | 0,0010 |
5 | 0,0010 |
6 | 0,0000 |
7 | 0,0000 |
8 | 0,0000 |
9 | 0,0000 |
10 | 0,0000 |
11 | -0,0005 |
12 | -0,0005 |
13 | -0,0005 |
14 | -0,0005 |
15 | -0,0005 |
16 | -0,0009 |
17 | -0,0009 |
18 | -0,0009 |
19 | -0,0009 |
20 | -0,0009 |
Закон спадаючої граничної сподіваної корисності розширює дію закону спадаючої граничної корисності. У випадку розглянутої схеми страхування сформульований закон означає, що кожна додаткова одиниця застрахованого активу приносить його власнику все менший приріст його сподіваної корисності.
Помічена властивість може використовуватись для раціоналізації розрахунків: як тільки гранична сподівана корисність стає від’ємною, розрахунки далі можна не продовжувати.
Реакція клієнта на зміну параметрів страхування
Якщо зафіксувати страхову премію, то страховий платіж можна інтерпретувати як плату за ризик. Оскільки ризик для людини, несхильної до ризику, - антиблаго, то плата за нього здійснюється для того, щоб ризику позбутись. Економісту важливо вміти дослідити ринок товару „ризик”, і зокрема, наскільки жвавіше йде торгівля цим товаром у разі зміни ціни на ризик.
Зробимо ще один розрахунок за іншого страхового платежу r=0,003. Методика розрахунків абсолютно аналогічна до вже наведених. Результати нових розрахунків відображені в табл.4. та на рис. 4.
Табл.4. Обсяг страхування та сподівана корисність за різних рівнів страхових платежів
Обсяг страхування |
Сподівана корисність за r=0.001 |
Сподівана корисність за r=0.003 |
0 | 179,9820 | 179,9820 |
1 | 179,9830 | 179,9830 |
2 | 179,9840 | 179,9840 |
3 | 179,9850 | 179,9850 |
4 | 179,9860 | 179,9860 |
5 | 179,9870 | 179,9870 |
6 | 179,9870 | 179,9870 |
7 | 179,9870 | 179,9870 |
8 | 179,9870 | 179,9870 |
9 | 179,9870 | 179,9870 |
10 | 179,9870 | 179,9870 |
11 | 179,9865 | 179,9865 |
12 | 179,9860 | 179,9860 |
13 | 179,9855 | 179,9855 |
14 | 179,9850 | 179,9850 |
15 | 179,9845 | 179,9845 |
16 | 179,9836 | 179,9836 |
17 | 179,9827 | 179,9827 |
18 | 179,9818 | 179,9818 |
19 | 179,9809 | 179,9809 |
20 | 179,9800 | 179,9800 |