Курсовая работа: Мультипликативность стационарного распределения в открытых сетях с многорежимными стратегиями
Здесь условие 2) гарантирует регулярность марковского процесса, который не может за конечное время делать бесконечное число скачков из одного состояния в другое.
Замечание 2.2 . Если условие (2.1.24) выполнено во всех узлах и ряд (2.1.25) сходится, то получается простой алгоритм для нахождения стационарных вероятностей:
1. Решается система линейных уравнений (2.1.1).
2. Проверяется выполнение условия (2.1.24).
3. Определяется по формуле (2.1.26) и проверяется сходимость ряда (2.1.25).
4. Определяются с помощью соотношения
где
(Формулы (2.1.28), (2.1.29) получаются из (2.1.18), (2.1.19) с учетом персонификации -го узла и того, что на него в изоляции направляется простейший поток с параметром
).
5. Находится стационарное распределение состояний сети с помощью формулы (2.1.2).
При этом нормировку вероятностей можно производить не раз, как это делалось в пункте 4, а один раз, исходя из условия
. Отметим также, что если в сети есть терминальные узлы, в которых условие (2.1.24) не выполняется, то алгоритм существенно усложнится, так как в этих узлах нельзя применить (2.1.28), (2.1.29). Поэтому для таких узлов необходимо добавить процедуру численного решения системы уравнений (2.1.3) – (2.1.8) с последующей его нормировкой.
Замечание 2.3 . Нетрудно понять, что совместное стационарное распределение чисел заявок в узлах имеет следующую форму:
где
а совместное стационарное распределение режимов работы узлов – форму:
где
Исходя из этих соотношений можно построить также алгоритм подсчета числовых характеристик узлов в стационарном режиме. Например, можно найти среднее стационарное число заявок в каждом узле, средний стационарный режим работы каждого узла и т.п. В принципе можно построить алгоритм нахождения совместной стационарной производящей функции чисел заявок и режимов работы в узлах сети, алгоритмы нахождения совместной производящей функции чисел заявок и нахождения совместной производящей функции режимов работы узлов в установившемся состоянии.
Пусть – часть выходящего из
-го узла потока заявок, покидающих сеть
– подмножество нетерминальных узлов
. Из леммы 2.2 и результатов работы
вытекает
Следствие 1.1 [43, C.133] . Потоки являются независимыми пуассоновскими потоками с параметрами
соответственно .
Заметим, что если условию (2.1.23) подчиняются все узлы, то – независимые пуассоновские потоки.
2 Сети с переключением режимов при определенном количестве заявок в узле
Пусть , где
– вектор, все координаты которого равны нулю кроме
– вектор, все координаты которого равны нулю кроме
. На фазовом пространстве
задан многомерный марковский процесс
, где
, своими инфинитезимальными интенсивностями перехода
Интенсивности перехода из состояния во все состояния, отличные от вышеперечисленных, предполагаются равными нулю. Здесь
, если
и
, если
и
и
.