Курсовая работа: Обработка результатов измерений

Относительно погрешности предполагаются следующие допущения:

1) – случайная величина с нормальным распределением.

2) Математическое ожидание (отсутствует систематическая погрешность)

3) Погрешность имеет дисперсию , которая не меняется в зависимости от номера измерения, т.е. измерение равноточное.

4) Измерения независимы.

При этих допущениях плотность распределения результата измерения запишется в виде:

(2.3.1)

В данном случае истинное значение измеряемой величины a входит в формулу (2.3.1) как параметр.

Вследствие независимости отдельных измерений плотность распределения системы величин y 1, y 2,…, yn. выражается формулой:

. (2.3.2)


С учетом (2.3.1) и независимости y 1, y 2,…, yn. их многомерная плотность распределения (2.3.2) представляет собой функцию правдоподобия:

(2.3.3)

Используя функцию правдоподобия (2.3.3) необходимо найти оценку ao для измеряемой величины a таким образом, чтобы в (2.3.3) a = aoвыполнялось условие:

(2.3.4)

Для выполнения (2.3.4) необходимо, чтобы

(2.3.5)

По сути условие (2.3.5) является формулировкой критерия наименьших квадратов, т.е. для нормального распределения оценки по методу наименьших квадратов и методу максимального правдоподобия совпадают.

Из (2.3.4) и (2.3.5) можно получить также наилучшую оценку

(2.3.6)

Важно понимать, что полученная оценка является случайной величиной с нормальным распределением. При этом


(2.3.7)

Таким образом, получая , мы увеличиваем точность измерений, т. к. дисперсия этой величины в n раз меньше дисперсии отдельных измерений. Случайная погрешность при этом уменьшится в раз.

Для оценки неопределенности величины необходимо получить оценку погрешности (дисперсии). Для этого прологарифмируем функцию максимального правдоподобия (2.3.3) и оценку дисперсии найдем из условия

(2.3.8)

После дифференцирования получим

(2.3.9)

а далее, из (2.3.9) – оценку дисперсии :

(2.3.10)

Таким образом мы доказали, что для нормально распределенных данных СКО является лучшей оценкой дисперсии.

К-во Просмотров: 317
Бесплатно скачать Курсовая работа: Обработка результатов измерений