Курсовая работа: Обработка результатов измерений
Относительно погрешности предполагаются следующие допущения:
1) – случайная величина с нормальным распределением.
2) Математическое ожидание (отсутствует систематическая погрешность)
3) Погрешность имеет дисперсию , которая не меняется в зависимости от номера измерения, т.е. измерение равноточное.
4) Измерения независимы.
При этих допущениях плотность распределения результата измерения запишется в виде:
(2.3.1)
В данном случае истинное значение измеряемой величины a входит в формулу (2.3.1) как параметр.
Вследствие независимости отдельных измерений плотность распределения системы величин y 1, y 2,…, yn. выражается формулой:
. (2.3.2)
С учетом (2.3.1) и независимости y 1, y 2,…, yn. их многомерная плотность распределения (2.3.2) представляет собой функцию правдоподобия:
(2.3.3)
Используя функцию правдоподобия (2.3.3) необходимо найти оценку ao для измеряемой величины a таким образом, чтобы в (2.3.3) a = aoвыполнялось условие:
(2.3.4)
Для выполнения (2.3.4) необходимо, чтобы
(2.3.5)
По сути условие (2.3.5) является формулировкой критерия наименьших квадратов, т.е. для нормального распределения оценки по методу наименьших квадратов и методу максимального правдоподобия совпадают.
Из (2.3.4) и (2.3.5) можно получить также наилучшую оценку
(2.3.6)
Важно понимать, что полученная оценка является случайной величиной с нормальным распределением. При этом
(2.3.7)
Таким образом, получая , мы увеличиваем точность измерений, т. к. дисперсия этой величины в n раз меньше дисперсии отдельных измерений. Случайная погрешность при этом уменьшится в раз.
Для оценки неопределенности величины необходимо получить оценку погрешности (дисперсии). Для этого прологарифмируем функцию максимального правдоподобия (2.3.3) и оценку дисперсии найдем из условия
(2.3.8)
После дифференцирования получим
(2.3.9)
а далее, из (2.3.9) – оценку дисперсии :
(2.3.10)
Таким образом мы доказали, что для нормально распределенных данных СКО является лучшей оценкой дисперсии.