Курсовая работа: Обработка результатов измерений

При совместных измерениях полученные значения используются для построения зависимостей между измеряемыми величинами. Рассмотрим многофакторный эксперимент, по результатом которого должна быть построена зависимость

Предположим далее, что зависимость то есть параметр состояния есть линейная комбинация из входных факторов. В процессе эксперимента проводится совместных измерений для нахождения коэффициентов

В этом случае искомые величины определяются в результате решения системы линейных уравнений:

(2.3.18)

Где – искомые коэффициенты зависимости, которую необходимо определить, – измеряемые значения величин.

В предположении, что система уравнений (2.3.18) является точной, но значения получены с погрешностями, запишем:

(2.3.19)

где – погрешность измерения , тогда

(2.3.20)

Для решения задачи мы вынуждены использовать значения . При этом, если число измерений больше числа неизвестных в уравнении (2.3.18), то система (2.3.18) не имеет однозначных решений.

Поэтому уравнения системы (2.3.18) иногда называют условными.

Оценим случайную погрешность совместных измерений. Пусть погрешность имеет нормальный закон распределения с нулевым математическим ожиданием и дисперсией. Измерения независимы. В этом случае по аналогии с обработкой прямых измерений может быть построена функция максимального правдоподобия:


(2.3.21)

Для нахождения экстремума функции правдоподобия (2.3.21) воспользуемся уже известной процедурой. Прологарифмируем (2.3.21) и найдём значения, при которых функция достигает экстремума. Условие максимума функции (2.3.21) является:

(2.3.22)

Таким образом ((2.3.22)) отвечает требованиям метода наименьших квадратов. Следовательно, при нормальном распределении случайной погрешности оценки по методу максимального правдоподобия и по методу наименьших квадратов совпадает.

Для нахождения оценки удовлетворяющей (2.3.22) необходимо добиться равенства нулю всех частных производных этой функции по

Для каждого значения эта оценка будет находиться из следующего уравнения:

(2.3.23)

Система уравнений (2.3.23) является линейной относительно и называется системой нормальных уравнений. Число уравнений в системе всегда совпадает с числом .

Система (2.3.23) решается методом определителей


Где D – определитель матрицы а определитель D j получается из определителя D заменой j-го столбца столбцом свободных членов.

Для нахождения оценки дисперсии результатов найдем условие максимума после логарифмирования (2.3.21) и подставим (см. (2.3.8–2.3.10)), получим:

Построение функциональной зависимости при однофакторном эксперименте

Пусть при однофакторном эксперименте имеется выборка, описывающая изменения входных параметров, и набор выходных величин (рис. 3.1). Необходимо построить зависимость .

Рис. 3.1

К-во Просмотров: 318
Бесплатно скачать Курсовая работа: Обработка результатов измерений