Курсовая работа: Обработка результатов измерений
1. Дальнейшая обработка может проводиться при непосредственном численном использовании массива значений .
2. 2. В случае, когда количество измерений i не слишком велико и разброс значений мал, зависимость может быть построена путем интерполяции (аппроксимации) через все экспериментальные точки. В этом случае проводится зависимость через все точки с координатами . Простейший вариант проведения такой зависимости заключается в построении полинома (степенного ряда).
Пусть (3.1.1)
Интерполирующая функция
Многочлен имеет n + 1 член.
Требуя выполнения условия (3.1.1), получим систему из уравнений с неизвестными:
(3.1.2)
где каждому соответствует свое уравнение.
Вместо решения системы уравнений (3.1.2) на практике используются более удобные и менее трудоемкие способы, в частности:
· интерполирование многочленом Лагранжа;
· интерполирование многочленом Ньютона.
Интерполяционные формулы Ньютона особенно удобны в случае равноотстоящих узлов ( одинаково для всех i ). В случае, если i велико (большое число узлов), интерполяционный многочлен имеет высокую степень и оказывается неудобным для вычислений.
3. При слишком высокой степени полинома проблемы можно избежать, разбив отрезок интерполяции на несколько частей с построением для каждой из них своего интерполяционного многочлена. Такое интерполирование имеет серьезный недостаток: в точках стыка интерполяционных многочленов оказывается разрывной первая производная. На рисунке 3.2 показан простейший способ такой интерполяции экспериментальной зависимости – соединение соседних точек прямыми (многочлен степени ).
4. Если необходимо, чтобы зависимость имела непрерывные производные, пользуются сплайнами.
Сплайн (от англ. spline– рейка) – функция, являющаяся алгебраическим многочленом на каждом отрезке и непрерывная во всей области вместе со своими производными. Чаще всего пользуются сплайнами третьей степени. Соответствующая зависимость показана на рис. 3.2 курсивом.
Рис. 3.2.
5. При однофакторном эксперименте, когда имеются результаты многократных измерений со случайной погрешностью (см. параграф 2.2 настоящего пособия), проведение зависимости через все экспериментальные точки бессмысленно. Чаще всего в этом случае для построения функциональной зависимости пользуются методом наименьших квадратов (МНК).
Построение функциональной зависимости при помощи метода наименьших квадратов. Данный метод используется тогда, когда число точек i (узлов) велико и построение плавной зависимости
(3.1.3)
проходящей через все точки невозможно из-за большого разброса значений.Функция (3.1.3) называется уравнением регрессии y на x. Пусть приближенная функция, описывающая зависит от трех параметров Эта функция не будет проходить через все точки с координатами тогда можно найти сумму квадратов разностей
(3.1.4)
Задача сводится к отысканию минимума , т.е. к решению системы уравнений
А именно
(3.1.5)
Решив систему (3.1.5) относительно параметров a, b, c находим конкретный вид искомой функции.
Приближающая (приближенная) функция может иметь любой вид: линейная зависимость, парабола, синусоида и т.д. Чаще всего используются алгебраические многочлены не выше третьего порядка. В большинстве случаев анализируется линейная регрессия, когда
(3.1.6)
Главная особенность регрессионного анализа состоит в том, что регрессия y на x не соответствует регрессии x на y (см. рис. 3.3).