Курсовая работа: Основы практического использования прикладного регрессионного анализа
, .
4) Во всех опытах ошибки независимы.
, .
б) предпосылки регрессионной ошибки:
1). Матрица наблюдений имеет полный ранг;
.
2). Структура модели адекватна истинной зависимости;
3). Значения случайной ошибки не зависят от значений регрессоров ;
4). Ошибки регистрации регрессоров пренебрежимо малы по сравнению со случайной ошибкой .
1.2 Проверка предпосылок и предположений регрессионного анализа
Регрессионный анализ является одним из самых распространённых методов обработки результатов наблюдений. Он служит основой для целого ряда разделов математической статистики и методов обработки данных. Регрессионный анализ базируется на ряде предположений и предпосылок, нарушение которых приводит к некорректному его использованию и ошибочной интерпретации результатов.
Если F-критерий и показал, что подгонка модели в целом является удовлетворительной; целесообразно провести анализ остатков для проверки соблюдений предпосылок и предположений.
В этом случае исследуется набор отклонений между экспериментальными и предсказанными значениями зависимой переменной,
.
Проверка предпосылок и предположений регрессионного анализа включает в себя следующие задачи:
1) оценка случайности зависимой переменной;
2) оценка стационарности и эргодичности зависимых и независимых переменных;
3) Проверка гипотезы о нормальности распределения ошибок E ;
4) Обнаружение выбросов;
5) Проверка постоянства математического ожидания и дисперсии ошибок;
6) Оценка коррелированности остатков;
7) Обнаружение мультиколлинеарности.
1.2.1 Проверка случайности
Построение моделей методом множественного регрессионного анализа требуется выполнение предположения случайности и в нормальной линейной модели вида
где – вектор наблюдений зависимой переменной;
– матрица наблюдений независимых переменных;
– вектор неизвестных коэффициентов;
– вектор ошибок.