Курсовая работа: Основы практического использования прикладного регрессионного анализа

а) проверка заключается в исследовании поведения не ансамбля, а его отдельных реализаций; это означает, что доказательство внутренней стационарности отдельных реализаций может служить доказательством стационарности случайного процесса, которому принадлежит эта реализация;

б) для большинства процессов достаточно проверить слабую стационарность, поскольку, во-первых, для эффективного использования спектрального и корреляционного анализа случайных процессов достаточно выполнения условия слабой стационарности, а во-вторых, для реальных процессов обычно слабая стационарность влечет за собой и строгую; если процесс определяется нормальной плотностью, то это доказательство осуществляется автоматически, поскольку все моменты высших порядков полностью определяются средним и автокорреляционной функцией;

в) на практике часто стационарность автокорреляционной функции обеспечивается стационарностью дисперсии.

Учитывая эти допущения, проверку стационарности осуществляют исследованием одной реализации .

Для этого реализация делится на N равных интервалов таких, что её участки в пределах каждого интервала можно считать независимыми. Для всех интервалов вычисляются средние значения и средние значения квадратов, из которых составляются две последовательности и затем их проверяют на наличие тренда.


Если известно выборочное распределение, то для проверки можно использовать существующие непараметрические критерии (t-критерий Стьюдента, -критерий Пирсона, F-критерий Фишера), однако в обычной ситуации проверка стационарности осуществляется при высокой неопределенности относительно исследуемого процесса. В этом случае целесообразно использовать непараметрические критерии, например, критерий серий и критерий тренда

Критерий тренда основан на подсчете числа случаев, когда для в последовательности N наблюденных значений величины x .

Такое неравенство называется инверсией, а их число k определяется из соотношения

,

где

Число инверсий есть также случайная величина со средним

и дисперсией

.

Область принятия гипотезы ограничена интервалом .

Критерий тренда обладает большей мощностью при выявлении монотонного тренда, однако при выявлении колебательного тренда его мощность невелика, в этом случае целесообразнее использовать критерий серий.

Критерии проверки гипотезы стационарности обладают рядом особенностей:

1) Нет необходимости знать ширину полосы частот исследуемых процессов;

2) Не требуется точно знать время осреднения, использованное для вычисления средних и квадратов отклонений от средних;

3) Для проверки не обязательно, чтобы исследуемые процессы были полностью случайными. При изучении процессов может возникнуть случай, когда независимость от времени средних и квадратов не является достаточным условием для утверждения о независимости от времени автокорреляционной функции.

1.3 Обнаружение выбросов в выборке

Выбросом среди остатков представляет собой остаток, который значительно превосходит по абсолютной величине остальные и отличается от среднего по остаткам на три, четыре или даже более стандартных отклонений.

Для обнаружения выбросов необходимо построить график остатков, определённых по формуле

В случае если , данная точка будет характеризовать выброс. Следует отметить, что иногда выброс может дать полезную информацию. В этом случае необходимо более тщательное исследование выбросов, а не механическое их отбрасывание. Выбросы должны быть исключены сразу если выясняется, что они вызваны такими причинами, как ошибки в регистрации данных, неудовлетворительная настройка аппаратуры и т.д. Если имеется не одно аномальное измерение, то критерий их не обнаруживает, особенно если анализируется менее 30 измерений.

1.4 Мультиколлинеарность переменных

К-во Просмотров: 352
Бесплатно скачать Курсовая работа: Основы практического использования прикладного регрессионного анализа