Курсовая работа: Параллельный перенос в пространстве Лобачевского
, (48)
Если геодезическая линия временно-подобна (т. е. соответствует движению точки со скоростью, меньшей скорости света), то в качестве параметра р можно взять собственное время τ, и вектор Аα будет совпадать с четырехмерной скоростью. Таким образом, в этом случае уравнения геодезической линии можно толковать как уравнения параллельного переноса вектора скорости вдоль направления, даваемого этим же самым вектором (в четырехмерном смысле).
Из уравнений параллельного переноса для вектора нетрудно получить соответствующие уравнения для тензора любого ранга. В качестве примера рассмотрим случай ковариантного тензора второго ранга Тµν . Мы будем исходить из требования, чтобы инвариант
, (49)
не менялся при параллельном переносе, каковы бы ни были векторы Aµ и Вν Меняя обозначения значков, мы можем написать величину в виде
. (50)
Так как это выражение должно обращаться в нуль при любых Аµ и Bν , мы должны иметь
. (51)
что и является искомым обобщением уравнений параллельного переноса.
4 ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО
Исторически геометрия Лобачевского возникла как первая неевклидова геометрия, осознанная как таковая.Именно с представлениями о геометрии Лобачевского как о типичном представителе пространств отрицательной кривизны связаны в основном физические приложения этой науки. Среди этих приложений наиболее традиционными являются приложения в общей теории относительности, которая, с математической точки зрения, базируется на геометрии искривленных пространств.Геометрия Лобачевского (как двумерная, так и многомерная) моделирует экспоненциальную неустойчивость геодезических на пространствах отрицательной кривизны. Аналогично, сфера моделирует возникновение сопряженных точек на пространствах положительной кривизны.
Исходным пунктом геометрии Лобачевского является принятие всех предложений геометрии Евклида, не зависящих от 5-го постулата (то есть абсолютной геометрии, включая аксиомы Паша, Архимеда, Дедекинда), и присоединение к ним взамен отброшенного 5-го постулата следующей аксиомы, противоположной аксиоме Плейфера, а значит, и 5-му постулату.
Через точку, лежащую вне прямой в плоскости, определяемой ими, можно провести не менее двух прямых, не пересекающих данной прямой.
Заметим, что существование хотя бы одной прямой, проходящей через данную точку и не пересекающей данной прямой, есть факт абсолютной геометрии. Аксиома Лобачевского утверждает существование по крайней мере двух таких прямых. Отсюда немедленно следует, что таких прямых существует бесконечное множество.
Плоскость, в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью Лобачевского.
Заметим также, что геометрию Лобачевского называют гиперболической геометрией, в соответствии с чем плоскость и пространство Лобачевского называются гиперболическими.
В плоскости Лобачевского две прямые могут либо пересекаться, либо могут быть параллельными в некотором направлении, либо расходящимися. Поэтому в плоскости Лобачевского существует три вида пучков прямых:
1) пучок прямых, пересекающихся в одной точке, называемой центром пучка; такой пучок называется центральным или эллиптическим;
2) пучок прямых, параллельных в заданном направлении некоторой прямой, называемой осью пучка; такой пучок называется параболическим;
3) пучок расходящихся прямых, перпендикулярных к некоторой прямой, называемой базой пучка; такой пучок называется гиперболическим.
Любой из этих пучков определяется двумя своими прямыми, а параболический – одной с выбранным на ней направлением и что через всякую точку плоскости (кроме центра эллиптического пучка) проходит одна и только одна прямая пучка.
Эти три вида пучков связаны с тремя основными кривыми плоскости Лобачевского, являющимися кривыми постоянной кривизны.
Определение. Секущей равного наклона к двум данным прямым называется прямая, которая при пересечении с данными образует равные внутренние односторонние углы.
Определение. Если a и b – две прямые пучка и AB – какая-нибудь секущая равного наклона, пересекающая a и b в точках A и B, то эти точки называются взаимно соответственными относительно пучка.
Возьмём какую-нибудь прямую a данного пучка и на ней произвольную точку A. Тогда, проводя через точку A секущие равного наклона ко всем прямым пучка, мы на каждой прямой пучка найдём точку, соответственную точке A относительно пучка. Геометрическое место всех таких точек определит на плоскости некоторую линию. В зависимости от того, какого рода пучок рассматриваем, мы получим различные линии, построенные указанным выше способом.
Определение. Геометрическое место точек, соответственных некоторой точке A, взятой на одной прямой пучка, называется окружностью, орициклом (или, иначе, предельной линией) или эквидистантой в зависимости от того, будет ли данный пучок прямых соответственно эллиптическим, параболическим или гиперболическим. Сама точка A также включается в соответствующее геометрическое место.
Заметим, что прямая, как база гиперболического пучка, является частным случаем эквидистанты.
Орицикл может скользить по себе самому без деформации, подобно тому как это имеет место для прямой и окружности.
Таким же свойством обладает и эквидистанта: если заставить скользить по самой себе базу эквидистанты, то и сама эквидистант