Курсовая работа: Перетворення Фур’є. Спектри неперіодичних функцій
(4.2)
Застосувавши (4.2), знайдемо спектральну щільність
. (4.3)
Згідно (4.1), підставляючи (4.3), отримуємо інтеграл Фур’є в комплексній формі:
(4.4)
З формули (4.4) після відділення дійсної й мнимої частини можна перейти до інтеграла Фур'є в дійсній формі. З обліком парних і непарних функцій одержимо
, тобто
(4.5)
б) Минаючи стандартну процедуру, визначимо модуль і аргумент величини привівши її до показової форми запису
(4.6)
Поки співмножник експоненти (разом із синусом) міняє знак, він не може відігравати роль модуля . Неважко перевірити, що в проміжках
при
.
Тому для , значить ;
звідки
. (4.7)
В виразі (4.7) ціле число довільне, його варто вибрати так, щоб виділялося головне значення. Оскільки в означених вище інтервалах зміни w справедливо , то досить взяти .
Маємо:
1. амплітудний спектр у вигляді функції
,
Побудуємо таблицю амплітудного спектра
k | -4 | -2 | 0 | 2 | 4 |
0 | |||||
0 | 0 | 0 | 0 |
Графік амплітудного спектра наведений на рис.4.2
Рис.4.2 Графік амплітудного спектру досліджуємої неперіодичної функції
2. фазовий спектр у вигляді функції
, . Діаграми для
побудовані з урахуванням парності й непарності .
Побудуємо таблицю для фазового спектра
k | -2 | -1 | 0 | 1 | 2 |
0 | |||||
0 |
Графік фазового спектра наведений на рис.4.3