Курсовая работа: Проектирование карданной передачи
Рj - сила инерции автомобиля при его неравномерном движении (при ускорении или замедлении), Н.
Уравнение тягового баланса автомобиля проще и наглядней решать графическим способом, при котором строим графики зависимости каждого из слагаемых уравнения от скорости движения автомобиля, и производим сравнение положения точек кривой с положением точек суммарной кривой РΨ и РW .
Для построения графика зависимости силы тяги РТ на ведущих колесах автомобиля от скорости его движения используется выражение 13
, Н (13)
где Ме - вращающий момент на выходном конце коленвала двигателя при соответствующей его частоте вращения, Нм;
Скорость движения автомобиля при различных частотах вращения коленвала двигателя определяется по формуле-14
, км/ч (14)
Значения сил тяги РТ и скоростей автомобиля V следует определять для частот вращения коленвала двигателя nе , которые являются границами интервалов при разбиении всего диапазона частот вращения коленвала, проделанного в п. 1.2.2. Результаты расчетов по формулам 13 и 14 представляем в виде таблицы-5.
Таблица 5 – Расчет сил тяги на ведущих колесах проектируемого автомобиля и его скоростей движения
ne , об/мин | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
Me | 433,6 | 467 | 478 | 467 | 435 | 382,2 |
PTI | 26879,2 | 28949,7 | 29631,6 | 28949,7 | 26966,0 | 23692,8 |
VI | 2,6 | 5,2 | 7,8 | 10,3 | 13 | 15,5 |
PTII | 14279,6 | 15379,5 | 15741 | 15379,5 | 14325,7 | 12586,8 |
VII | 4,9 | 9,7 | 14,6 | 19,5 | 24,3 | 29,2 |
PTIII | 7978,2 | 8592,8 | 8795,2 | 8592,8 | 8004 | 7032,5 |
VIII | 8,7 | 17,4 | 26,1 | 34,8 | 43,5 | 52,2 |
PTIV | 4162,6 | 4483,2 | 4588,8 | 4483,2 | 4176 | 3669,12 |
VIV | 16,5 | 33 | 49,5 | 66 | 85 | 99 |
По рассчитанным значениям РТ и V строим график изменения силы тяги на ведущих колесах автомобиля в зависимости от его скорости движения. Пример графика приведен на рисунке-3.
Для построения графика зависимости силы сопротивления дороги РΨ от скорости движения автомобиля V используется формула
РΨ = mg [Н],
где Ψ- коэффициент сопротивления дороги (Ψ = i+ƒ);
i - уклон дороги; при движении автомобиля по горизонтальной дороге i =0;
ƒ - коэффициент сопротивления дороги; для дорог с асфальтобетонным покрытием значения коэффициента определяются по формуле
Таким образом, формула для определения силы сопротивления дороги РΨ приобретает вид формулы-15
, (15)
Сила сопротивления воздуха РW движению автомобиля определяется по формуле-16
, (16)
где k и F-коэффициент обтекаемости автомобиля и лобовая площадь автомобиля соответственно, значения которых принимались ранее в п. 1.2.1.
Так как и сила сопротивления дороги РΨ и сила сопротивления воздуха РW зависят от изменения скорости автомобиля, то задаваясь 5-ю6-ю различными значениями скорости V (предпочтительны значения скоростей из таблицы 2, развиваемые на различных передачах) подсчитываем значения сил сопротивления движению для этих значений скорости. Результаты расчета представляем в виде таблицы-6.
Таблица 6 – Расчет сил сопротивления движению проектируемого автомобиля по горизонтальной дороге с асфальтобетонным покрытием
V, км/ч | 2,6 | 15,5 | 29,2 | 52,2 | 85 | 99 |
РΨ , Н | 1051,1 | 1064 | 1096 | 1194,2 | 1431 | 1566 |
РW , Н | 1,07 | 38,1 | 135,1 | 432 | 1145 | 1553,1 |
По рассчитанным значениям сил РΨ и РW строим кривую зависимости суммарной силы сопротивления движению автомобиля РΨ + РW от скорости движения автомобиля для чего:
- строим кривую зависимости силы сопротивления дороги РΨ от скорости V;
- от точек кривой РΨ =ƒ(V) откладываем ординаты кривой РW =ƒ(V) и после соединения точек плавной линией получаем кривую РΨ + РW =ƒ(V).
Нанесенные на одном графике кривые РТ =ƒ(V), РΨ =ƒ(V) и РΨ + РW =ƒ(V) представляют собой графическое решение уравнения тягового баланса проектируемого автомобиля.