Курсовая работа: Проектирование системы оптимального корректирующего устройства

Проверим достаточное условие устойчивости. Для системы четвертого порядка достаточно проверить выполнение условия:

,

,

.

Условие выполняется, следовательно, система устойчива.

Проверим устойчивость системы по критерию Найквиста [1, §6.5, §6.6].

1. С использованием амплитудно-фазовой частотной характеристики (АФЧХ):

Запишем ПФ РС:

.

Для того чтобы судить об устойчивости замкнутой системы, необходимо проверить устойчивость разомкнутой системы. Для этого запишем характеристическое уравнение разомкнутой системы (ХУ РЗ) и найдем корни уравнения:

,

; ; ; .

Так как один из корней равен нулю (), а все остальные корни с отрицательными вещественными частями (левые), то можно сделать вывод, что разомкнутая система находится на апериодической границе устойчивости.

Далее необходимо построить АФЧХ разомкнутой системы (годограф Найквиста). Запишем выражение для построения АФЧХ и выделим действительную и мнимую части:

Задаваясь различными значениями ω в пределах от нуля до бесконечности, построим годограф Найквиста (рис. 1.8) по характерным точкам (табл. 1.4):

Таблица 1.4

ω

0

-5,146

-∞

46,7

-0,7

0

290,3

0

0,008

К-во Просмотров: 615
Бесплатно скачать Курсовая работа: Проектирование системы оптимального корректирующего устройства