Курсовая работа: Проектирование системы оптимального корректирующего устройства

0

0


Рис. 1.8. Годограф Найквиста

Так как годограф Найквиста, дополненный на участке разрыва дугой бесконечно большого радиуса, не охватывает особую точку (−1;j0), то замкнутая система устойчива.

2. С использованием ЛЧХ:

Запишем выражения и построим ЛАЧХ и ЛФЧХ (рис. 1.9):

.

Рис. 1.9. ЛЧХ системы


Замкнутая система устойчива, если выполняется неравенство:

,

где – частота среза, при которой ;

– критическая частота, при которой .

Так как неравенство выполняется, следовательно, замкнутая система устойчива.

Проверим устойчивость системы по критерию Михайлова [1, §6.3].

Запишем ХУ ЗС:

,

,

,

.

Подставим в этот полином чисто мнимое значение . При этом получим функцию Михайлова, как характеристический полином, состоящий из вещественной и мнимой части:


Задаваясь различными значениями ω в пределах от нуля до бесконечности, построим годограф Михайлова (рис. 1.10) по характерным точкам (табл. 1.5):

Таблица 1.5

К-во Просмотров: 617
Бесплатно скачать Курсовая работа: Проектирование системы оптимального корректирующего устройства