Курсовая работа: Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений

КУРСОВАЯ работа

Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений

1. Исходные данные

1. Задан следующий тензор напряжений:

МПа.

2. Направляющие косинусы площадки, по которой нужно вычислить напряжения, равны:

.

1.1 Определение инвариантов напряженного состояния

Инвариантом называется величина, независящая от системы координат. В частности, напряженное состояние в любой точке является инвариантом, несмотря на то, что составляющие тензора в разных системах координат, т.е. напряжения, действующие по координатным площадкам, различны. Однако, имеются выражения, составленные из напряжений по координатным площадкам, которые остаются постоянными в любой системе координат. Эти выражения и называются инвариантами напряженного состояния в точке или инвариантами тензора напряжений.

( 1)


1.2 Определение главных напряжений

Главными напряжениями называются нормальные напряжения, действующие по площадкам, где отсутствуют касательные напряжения. Координатные оси, являющиеся нормалями к таким площадкам, называются главными осями тензора напряжений, а сами площадки – главными площадками.

Главные напряжения определяются из кубичного уравнения:

(2)

Подставляя численные значения инвариантов тензора напряжений из(1), получаем:

Кубические уравнения общего вида могут иметь комплексные корни, уравнения для определения главных напряжений и главных деформаций всегда имеют три действительных корня. Решать их можно по-разному.

1. Можно сначала определить подбором один из корней уравнения, а затем разложить левую часть уравнения (2) на два сомножителя: линейный двучлен и квадратный трехчлен. После этого из решения квадратного уравнения определяются два оставшиеся корня.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 217
Бесплатно скачать Курсовая работа: Расчет напряжений деформаций в изотропном теле по заданному тензору напряжений