Курсовая работа: Регулирующий клапан прямого действия
откуда
;
Подставив эти значения в дифференциальное уравнение, получим выражение его в безразмерных единицах:
С учетом того, что с S макс = Р макс F можно записать:
Таким образом, при учете инерции подвижной системы и вязкого трения мембранный пневматический клапан при является колебательным звеном.
Постоянные времени и коэффициент передачи его равны:
Из этого примера следует, что в элементах систем регулирования вязкое трение не всегда является нежелательным /4, с. 45/. В данном случае достаточно высокое вязкое трение обеспечивает устойчивую работу клапана, так как постоянная времени Т1 пропорциональна коэффициенту вязкого сопротивления b.
Практически, когда силы вязкого трения в механических элементах, применяют дополнительное демпфирование подвижной системы, т. е. вводят дополнительную силу, противодействующую перемещению подвижной системы и пропорциональную скорости этого перемещения.
Если пневматический клапан применяется в системе с инерционным объектом, в котором переходные процессы протекают медленно, т. е. скорости изменения р вх и s вых небольшие, то величина ускорения d 2 s вых /d t 2 с точностью, достаточной для практических расчетов, может быть принята равной нулю. Тогда дифференциальное уравнение клапана примет вид /4, с. 45/:
.
Следовательно, в этом случае можно пренебречь инерционностью подвижных частей пневматического клапана и представлять его в динамическом отношении как апериодическое звено с передаточной функцией, определяемой формулой.
Расчет коэффициентов
Определим значения коэффициентов: коэффициента вязкости и коэффициента жесткости пружины.
Для этого выбираем клапан.
Будем рассматривать мембранный пневматический клапан – химическая арматура (регулирующий орган). Данные регуляторы в основном применяют для обслуживания тепловых сетей, т. е. для поддержания заданных значений параметров теплоносителя, поступающего в системы отопления, горячего водоснабжения и к техническому оборудованию промышленных предприятий /3, с. 84/. Данный регулятор способен работать с широким температурным диапазоном от –40 до 300˚С.
Марка РК 101.1 – клапан регулирующий. Материал корпуса сталь 12Х18Н9ТЛ.
Предположим, что диаметр заделки мембраны D = 250 мм (F э = 400 см2 ) и условный ход штока S у = 25 мм. Диаметр условного прохода клапана D у = 150 мм, при этом масса подвижной системы равна 20,5 кг (m = 20,5 кг).
При выполнении технических расчетов в гидравлике обычно пользуются кинематической вязкостью b /1, с. 11/. Единицей кинематической вязкости в системе СИ является метр в квадрате на секунду (м2 /с). При необходимости можно пользоваться производной единицей – миллиметр в квадрате на секунду (мм2 /с), 1 мм2 /с = 10-6 м2 /с.
Для воды кинематическая вязкость находиться по формуле /1, с. 13/:
при температуре жидкости 200˚С кинематическая вязкость будет равна:
Определяем коэффициент сжатия пружины. Данный коэффициент зависит от материала, из которого изготовлена пружина, от диаметра проволоки и от значения индекса пружины.
Материал пружины выбирается в зависимости от его механических свойств по табл. 1 стр. 26 (Пс – 4Х13) (Пс – пружины цилиндрические сжатия). Определяем ориентировочно индекс спр пружины по табл. 2 стр. 27 с учетом возможности дальнейшего его уточнения (Пс – спр ≈ 6). Коэффициент с , зависящий от значения индекса, находится по табл. 3 (Пс – при спр ≈ 6 коэффициент с = 1,24).
Зная данные коэффициенты можно определить постоянные времени: