Курсовая работа: Решение прикладных задач методом дихотомии

Иначе

Условием нахождения корня является:

2. Нелинейное уравнение и условие его решения:

, [1,2], ε = 0,0001;

3. График функции:


4. Схема алгоритма:


5. Таблица идентификаторов:

Обозначение Идентификатор Тип
n n int
a double
b double
eps double
x x double
f(x) f(x) double

6. Листинг программы :

#include<stdio.h>

#include<math.h>

double f(double x)

{

return 0.25*(pow(x,3))+x-1.2502;

}

int main(void)

{

int n=0;

double x,a=0.,b=2.,eps=0.0001;

while (fabs(a-b)>2*eps)

{

x=(a+b)/2,

n++;

printf("step=%3i x=%11.8lf f(x)=%11.8lf\n",n,x,f(x));

if (f(x)==0)

{

printf("Tothnii koreni x=%lf\nkolithestvo iteratsii n=%i\n",x,n);

К-во Просмотров: 496
Бесплатно скачать Курсовая работа: Решение прикладных задач методом дихотомии