Курсовая работа: Решение прикладных задач методом дихотомии

}

else if (f(a)*f(x)<0) b=x;

else a=x;

}

printf("Reshenie x=%11.8lf pri Eps=%lf\nkolithestvo iteratsii n=%i\n",x,eps,n);

return 0;

}

7. Листинг решения:

step= 1x= 1.50000000f(x)=-0.21392288

step= 2x= 1.25000000f(x)=-0.00893133

step= 3x= 1.12500000f(x)= 0.08982692

step= 4x= 1.18750000f(x)= 0.04080796

step= 5x= 1.21875000f(x)= 0.01602415

step= 6x= 1.23437500f(x)= 0.00356738

step= 7x= 1.24218750f(x)=-0.00267680

step= 8x= 1.23828125f(x)= 0.00044659

step= 9x= 1.24023438f(x)=-0.00111478

step= 10 x= 1.23925781f(x)=-0.00033401

step= 11 x= 1.23876953f(x)= 0.00005631

step= 12 x= 1.23901367f(x)=-0.00013885

step= 13 x= 1.23889160f(x)=-0.00004127

Reshenie x= 1.23889160 pri Eps=0.0001

kolithestvo iteratsii n=13


Метод хорд:

1. Этот метод заключается в том, что к графику функции проводится хорда. Находим точку пересечения с осью OX и опускаем из этой точки прямую параллельную OY. Из точки пе-ресечения прямой и графика проводим хорду и операция повторяется до тех пор, пока точка пересечения хорды с осью OX не приблизиться к корню функции до заданной погрешности.

Шаг первый:

Нас интересует точка пересечения с осью ОХ.

Сделаем допущение: х=x1

К-во Просмотров: 497
Бесплатно скачать Курсовая работа: Решение прикладных задач методом дихотомии