Курсовая работа: Решение задач линейного программирования

Здесь учитывается, что общая емкость склада уменьшается на остаток полок, которые остались невывезенными с прошлого месяца. Кроме того, в течение месяца каждый день будет освобождаться по N мест для полок.

Ограничение по примерной емкости рынка:

х1+х2+х31100

шт./мес. шт./мес.

1100 – емкость рынка по всем видам полок.

· Ограничение по гарантированному заказу.

х15,

х312

шт./мес. шт./мес.

Необходимо произвести как минимум 5 полок А и 12 полок В3.

· Ограничения по соотношению объемов продаж различных товаров.

Процентное отношение количество полок А и В1 ко всему объему продаж:

(х1-5)+х20,43[(х1-5)+х2+(х3-12)]

0,57х1+0,57х2-0,43х3 - 2,31

Шт./мес. шт./мес.

· Определение количества комплектов для полок В1 и В2

3.2.2. Первый этап решения задачи

В зависимости от размеров листов ДСП и габаритов полок детали В1 и В2 можно выкроить различными способами. Рассмотрим 3 возможных варианта такого раскроя (рис.10).

L(Y)=Yкомпл мах комппл./мес.

Согласно 1 варианту из одного листа ДСП для полок В1 и В2 можно выкроить 19 деталей верхней и нижней стенок, а также 9 деталей боковых стенок. По 2 варианту раскроя получаем 12 деталей верхней и нижней стенок и 36 деталей боковых стенок. По 3 варианту раскроя получаем 16 деталей верхней или нижней стенок и 18 деталей боковых стенок.

Обозначим количество листов ДСП, раскроенных в течение месяца : по 1-му варранту через у1(лист./мес.); по 2 варианту – у2(лист./мес.); по 3 варианту – у3(лист./мес.). Таким образом, наша цель – укомплектовка максимального количества полок – описывается целевой функцией:

L(Y)=Yкомпл мах

Количество всех раскроенных листов ДСП не должно превышать 415, то есть ежемесячный запас их на складе:

у1+у2+у3 415

лист./мес.

Количество верхних и нижних стенок, получаемых при раскрои:

19у1+12у2+16у3 2Yкомпл

дет,мес. дет./мес.

Ограничение, задающие нижнюю границу количества боковых стенок полок:

К-во Просмотров: 1051
Бесплатно скачать Курсовая работа: Решение задач линейного программирования