Курсовая работа: Решетки субнормальных и f-субнормальных подгрупп
Так как , то . С другой стороны, и , откуда получаем . Теорема доказана.
Определение. Пусть – субнормальная подгруппа дефекта в . Субнормальная -цепь
называется канонической, если для любой субнормальной -цепи
имеет место , , ,…, .
Другими словами, каноническая субнормальная цепь входит почленно в любую другую субнормальную цепь той же длины.
Теорема. Если субнормальна в , то существует единственная каноническая субнормальная -цепь.
Доказательство. Пусть – дефект подгруппы в группе . Будем рассматривать все возможные субнормальные -цепи длины .
все субнормальные -цепи длины ( – второй индекс). Положим . Так как , то для любого , ,…, мы имеем
Таким образом, цепь
является субнормальной -цепью длины и, следовательно, не имеет повторений. Так как при любых и , то теорема доказана.
Теорема. Если субнормальна в и – подгруппа , то пересечение есть субнормальная подгруппа .
Доказательство. Рассмотрим субнормальную -цепь минимальной длины :
Положим . Получаем цепь
Ясно, что она будет субнормальной, так как . Действительно, пусть , значит, и . Тогда для любого , так как и .
Мы получили субнормальную -цепь. Теорема доказана.
Следствие. Пусть и – подгруппы группы . Если субнормальна в и – подгруппа , то субнормальна в .
Доказательство. Пусть и цепь
является субнормальной -цепью.
Положив , получим субнормальную -цепь
что и требовалось.