Курсовая работа: Решетки субнормальных и f-субнормальных подгрупп
Отсюда и из насыщенности получим . Но тогда , что невозможно.
Пусть – главный фактор группы . Ввиду 2) является -группой и . Следовательно, каждая -абнормальная масимальная подгруппа группы является -нормализатором группы . Так как -нормализатор группы покрывает только -центральные главные факторы, то мы получаем, что -гиперцентральна в . Согласно следствию 9.3.1 из [5] . Отсюда следует, что , т.е. .
Обозначим через коммутант группы . Так как – -корадикал группы , то по теореме 11.6 из [5] каждый главный фактор группы на участке от до -эксцентрален. Отсюда и из -гиперцентральности заключаем, что . Так как
то мы получаем тaкже рaвенство . Таким образом, утверждения 2) – 6), 9) доказаны.
Докажем 7). Предположим, что неабелева. Пусть – произвольный элемент из . Ввиду 4) , причем . Следовательно,
для всех элементов , из . Это означает, что имеет экспоненту . Учитывая это и то, что содержится в , получаем для любых , из при :
Значит, отображение является -эндоморфизмом группы . Так как
то -гиперцентральна в . Вспоминая, что – -эксцентральный главный фактор, получаем равенство . Так как имеет экспоненту , то утверждение 7) при доказано.
Пусть . Тогда
где . Рассматривая отображение как и выше получаем, что . Значит имеет экспоненту не больше 4.
Докажем 8). Выше мы доказали, что . Пусть . Тогда в найдется такая максимальная подгруппа , что . Так как , то . Отсюда . Противоречие. Итак, . По теореме 9.4 из [5] имеем для любой -абнормальной максимальной подгруппы группы . Нетрудно показать, что .
По теореме 7.11 из [5],
Так как , то
Ввиду того, что и – главный фактор , имеем . Итак, . Пусть – любая -абнормальная максимальная подгруппа группы . Тогда . Ясно, что
Не ограничивая общности, положим . Тогда – единственная минимальная нормальная подгруппа . Легко видеть, что и . Но – -группа. Значит, . По условию . Следовательно, ввиду полноты экрана имеет место
то . Таким образом, всякая собственная подгруппа группы принадлежит . Допустим, что . Тогда
и поэтому . Полученное противоречие показывает, что , т.е. – минимальная не -группа.
Предположим теперь, что . Покажем, что . Не теряя общности, можно положить, что . Тогда , . Пусть , где и , где . Для всякого через обозначим подгруппу . Предположим, что все отличны от . Так как , то – дополнение к в . Если для всех различных и , то