Курсовая работа: Решетки субнормальных и f-субнормальных подгрупп
Отсюда и из насыщенности получим
. Но тогда
, что невозможно.
Пусть – главный фактор группы
. Ввиду 2)
является
-группой и
. Следовательно, каждая
-абнормальная масимальная подгруппа группы
является
-нормализатором группы
. Так как
-нормализатор группы
покрывает только
-центральные главные факторы, то мы получаем, что
-гиперцентральна в
. Согласно следствию 9.3.1 из [5]
. Отсюда следует, что
, т.е.
.
Обозначим через коммутант группы
. Так как
–
-корадикал группы
, то по теореме 11.6 из [5] каждый главный фактор группы
на участке от
до
-эксцентрален. Отсюда и из
-гиперцентральности
заключаем, что
. Так как
то мы получаем тaкже рaвенство . Таким образом, утверждения 2) – 6), 9) доказаны.
Докажем 7). Предположим, что неабелева. Пусть
– произвольный элемент из
. Ввиду 4)
, причем
. Следовательно,
для всех элементов ,
из
. Это означает, что
имеет экспоненту
. Учитывая это и то, что
содержится в
, получаем для любых
, из
при
:
Значит, отображение является
-эндоморфизмом группы
. Так как
то
-гиперцентральна в
. Вспоминая, что
–
-эксцентральный главный фактор, получаем равенство
. Так как
имеет экспоненту
, то утверждение 7) при
доказано.
Пусть . Тогда
где . Рассматривая отображение
как и выше получаем, что
. Значит
имеет экспоненту не больше 4.
Докажем 8). Выше мы доказали, что . Пусть
. Тогда в
найдется такая максимальная подгруппа
, что
. Так как
, то
. Отсюда
. Противоречие. Итак,
. По теореме 9.4 из [5] имеем
для любой
-абнормальной максимальной подгруппы
группы
. Нетрудно показать, что
.
По теореме 7.11 из [5],
Так как , то
Ввиду того, что и
– главный фактор
, имеем
. Итак,
. Пусть
– любая
-абнормальная максимальная подгруппа группы
. Тогда
. Ясно, что
Не ограничивая общности, положим . Тогда
– единственная минимальная нормальная подгруппа
. Легко видеть, что
и
. Но
–
-группа. Значит,
. По условию
. Следовательно, ввиду полноты экрана
имеет место
то . Таким образом, всякая собственная подгруппа группы
принадлежит
. Допустим, что
. Тогда
и поэтому . Полученное противоречие показывает, что
, т.е.
– минимальная не
-группа.
Предположим теперь, что . Покажем, что
. Не теряя общности, можно положить, что
. Тогда
,
. Пусть
, где
и
, где
. Для всякого
через
обозначим подгруппу
. Предположим, что все
отличны от
. Так как
, то
– дополнение к
в
. Если
для всех различных
и
, то