Курсовая работа: Решетки субнормальных и f-субнормальных подгрупп
и поэтому . Противоречие. Значит для некоторых различных и . Из последнего вытекает
что невозможно. Полученное противоречие показывает, что для некоторого и, следовательно, . Лемма доказана.
Лемма [4]. Пусть – наследственная локальная формация, – такая нормальная подгруппа группы , что . Тогда равносильно .
Доказательство. Пусть . Тогда , и если – произвольная максимальная подгруппа , то , а значит, и принадлежит . Следовательно, .
Предположим теперь, что . Понятно, что .Пусть – произвольная максимальная подгруппа , тогда . Пусть – произвольный -главный фактор из . Обозначим . Пусть