Курсовая работа: Симплекс метод в форме презентации
Содержание
Введение. 3
Математическое программирование. 5
Графический метод. 6
Табличный симплекс – метод. 6
Метод искусственного базиса. 7
Модифицированный симплекс – метод. 7
Двойственный симплекс – метод. 7
Общий вид задачи линейного программирования. 9
Решение задачи линейного программирования симплекс-методом. 11
Вычислительные процедуры симплекс – метода. 11
Теорема 1: 13
Теорема 2: 14
Теорема 3: 15
Теорема 4: 15
Теорема 5: 15
Переход к новому опорному плану. 15
Двойственная задача. 17
Теорема 1 (первая теорема двойственности) 18
Теорема 2(вторая теорема двойственности) 18
Заключение. 20
Приложение. 21
Введение
В последние годы в прикладной математике большое внимание уделяется новому классу задач оптимизации, заключающихся в нахождении в заданной области точек наибольшего или наименьшего значения некоторой функции, зависящей от большого числа переменных. Это так называемые задачи математического программирования, возникающие в самых разнообразных областях человеческой деятельности и прежде всего в экономических исследованиях, в практике планирования и организации производства («Определение наилучшего состава смеси», «Задача об оптимальном плане выпуска продукции», «Оптимизация межотраслевых потоков», « Задача о диете», «Транспортная задача» и т.д.).
Линейное программирование - это наука о методах исследования и отыскания наибольших и наименьших значений линейной функции, на неизвестные которой наложены линейные ограничения. Таким образом, задачи линейного программирования относятся к задачам на условный экстремум функции. Казалось бы, что для исследования линейной функции многих переменных на условный экстремум достаточно применить хорошо разработанные методы математического анализа, однако невозможность их использования можно довольно просто проиллюстрировать.
Действительно, путь необходимо исследовать на экстремум линейную функцию
Z = С1 х1 +С2 х2 +... +СN xN
при линейных ограничениях
a11 x1 + a22 x2 + ... + a1N ХN = b1
a21 x1 + a22 x2 + ... + a2N ХN = b2
--> ЧИТАТЬ ПОЛНОСТЬЮ <--