Курсовая работа: Синтез и анализ механизма двигателя внутреннего сгорания

δ = (ωimax – ωimin )/ωi ср

где ωimax – максимальная угловая скорость i – го звена приведения;

ωimin – минимальная угловая скорость i – го звена приведения;

ωi ср – средняя угловая скорость i – го звена приведения.

Допустимую величину коэффициента неравномерности dдоп для автомобильных двигателей примем 0.085.

Среднюю угловую скорость определим по формуле:

ωср = (ωmax + ωmin )/2

Для этого в программе MаthCAD используем функцию Minner.

После определения характеристики неравномерности δ подбираем момент инерции маховика таким образом, чтобы выполнялось неравенство δ≤dдоп .

Вычисления и графики представлены в приложении В.


8 Оптимизация параметров механизма

Параметрическая оптимизация механизма заключается в поиске оптимальной совокупности значений его внутренних параметров с учетом технических требований. Поиск оптимальных параметров может осуществляться методами оптимизации либо методом перебора. Для этого критерии оптимальности выражают целевыми функциями, в основе которых лежат математические модели механизмов, представленные таким образом, что при оптимальной совокупности внутренних параметров механизмов, соответствующей наилучшему значению выходных параметров, целевые функции имеют экстремальное значение. В качестве целевой функции выступает зависимость, отражающая полноту удовлетворения предъявляемых к механизму требований.

В качестве критериев оптимальности наиболее часто используют отклонение между желаемыми кинематическими или динамическими характеристиками выходного звена и реально реализуемыми механизмом, точность воспроизведения заданной функции или траектории, максимальное ускорение выходного звена, к.п.д. и производительность механизма и т.д.

В качестве параметров оптимизации, т.е. параметров, варьируя которыми стремятся к минимизации целевой функции, выступают геометрические размеры механизма: длины звеньев, углы, расстояния между стойками и т.д.

В кривошипно–шатунном механизме в качестве критериев оптимальности выберем длину кривошипа r и длину шатуна l. Оптимизацию будем выполнять методом перебора: оставляя постоянным значение длины шатуна l, варьируем значением длины кривошипа r и находим значение целевой функции F для каждого значения r, затем, фиксируя оптимальное значение r, перебираем значение l, и также находим значение целевой функции F. Выражение для целевой функции получим определив среднее отклонение закона изменения скорости поршня от требуемого закона движения. Требуемый закон изменения скорости:

Vт1 ) = –14×sin(φ1 )+1.5

Тогда значение целевой функции равно:

F = V11 ) – Vт1 )

Среднее отклонение закона изменения скорости поршня от требуемого закона движения найдем непосредственно в программе с использованием функции mean.

Далее составляем программы для определения отклонения в зависимости от длины кривошипа r и шатуна l. Длину кривошипа r выберем, изменяющуюся в пределах от 0.03 до 0.082, а длину шатуна l от 0.082 до 0.171.

В качестве ограничения максимального угла давления νmax используем следующее выражение: sin(νmax ) = r/l.

Затем строим графики зависимости отклонений законов изменения скоростей поршня от требуемого закона движения от длины кривошипа r и шатуна l.

Для получения оптимальных значений длины шатуна l и кривошипа r составляем программы в среде MathCAD.

Вычисления, программы и графики представлены в приложении Г.


Заключение

Выполняя курсовой проект, были проведены следующие работы: синтез и анализ механизма двигателя внутреннего сгорания, оптимизация кривошипно – шатунного механизма, определены основные параметры зубчатого механизма и построено эвольвентное зубчатое зацепление.

В результате синтеза и анализа механизма двигателя внутреннего сгорания были определены основные параметры механизмов и получены законы их изменения.

При оптимизации кривошипно – шатунного механизма получены значения оптимальной длины кривошипа 0.03 и оптимальной длины шатуна 0.0171.

Для зубчатого механизма получены значения чисел зубьев колес: z1 =17; z2 =17;z3 =17;z4 =51;z5 =17;z6 =34.


Список использованных источников

К.И. Заблонский и др. Теория механизмов и машин. Учебник. — Киев: Вища школа. 1989. — 376 с.

И.М. Белоконев. Теория механизмов и машин. Методы автоматизированного проектирования. — Киев: Вища школа. — 1990. — 208 с.

Теория механизмов и механика машин / Под ред. К.В. Фролова: М., Высшая шк. — 1998. — 496с.

К-во Просмотров: 371
Бесплатно скачать Курсовая работа: Синтез и анализ механизма двигателя внутреннего сгорания