Курсовая работа: Современная научно-техническая документация на статистические методы анализа результатов измерений
Уравнение косвенных измерений имеет вид
y=f(x1, x2, …xn)
где y − искомая величина, являющаяся функцией величин x1, x2 … xn , полученных методом прямых измерений.
На практике для определения искомой величины зачастую необходимо иметь результаты нескольких независимых наблюдений величин x, y, z, которые образуют функцию f = f(x, y, z).
Функция fпредполагается дифференцируемой по всем переменным, а также предполагается, что на интервалах, куда попадают значения x, y, zфункции fне имеет нулей частных производных.
Обозначение функции fi = f(xi, yi, zi)
Существуют два метода обработки результатов косвенных измерений:
− метод переноса погрешностей;
− выборочный метод.
Обработка результатов измерений методом переноса погрешностей.
Этот метод используется в случае, когда каждая из величин x, y, z, представляющих собой аргументы функций, измеряется независимо от остальных в своей серии опытов, и эти величины организуют выборку (или они близки друг к другу). Число опытов в сериях не обязательно должно быть одинаково, но обязательным условием остается неизменность условий для прямого измерения величин в своей серии, неизменность условий для fво всех сериях и взаимная независимость всех опытов.
Обработка полученных данных измерений каждого опыта производится по алгоритму прямых измерений с многократным наблюдением.
Рассчитать значение функции = f(,, )
Вычислить частные производные от функций
, ,
Или, для легко логарифмируемой функции f, от ее логарифма
Вычислить полную погрешность функции
(формула переноса погрешностей) или по эквивалентной формуле для легко логарифмируемой функции
Результаты измерений представляются в форме
P%, n
6. Обработка данных косвенных измерений выборочным методом
Этот метод применяется в том случае, если совместно измеренные значения аргумента функции xi, yi, ziне образуют выборок, но можно создать выборку значений функции {f}.
По каждому набору совместно измеренных значений аргументов рассчитать значения функции fi = f(xi, yi, zi).
Провести обработку полученной выборки {fi} согласно алгоритму обработки данных прямых измерений, находя среднее значение и случайную погрешность ∆fфункции.
Произвести вывод выражений для частных производных от функции