Курсовая работа: Статистические методы выявления взаимосвязей общественных явлений
;
, (6.22)
где r – парные коэффициенты корреляции между указанными в индексе переменными.
В первом случае исключено влияние факторного признака х 2 , во втором – х 1.
Для оценки сравнительной силы влияния факторов, по каждому фактору рассчитывают частные коэффициенты эластичности :
, (6.23)
где – среднее значение соответствующего факторного признака;
– среднее значение результативного признака;
– коэффициент регрессии при i -м факторном признаке.
Данный коэффициент показывает, на сколько процентов следует ожидать изменения результативного показателя при изменении фактора на 1% и неизменном значении других факторов.
Частный коэффициент детерминации показывает, на сколько процентов вариация результативного признака объясняется вариацией i -го признака, входящего в множественное уравнение регрессии, рассчитывается по формуле:
, (6.24)
где – парный коэффициент корреляции между результативным и i -м факторным признаком;
– соответствующий стандартизованный коэффициент уравнения множественной регрессии:
. (6.25)
Практическая часть
Выявить зависимость между нераспределенной прибылью и инвестициями в основные фонды, применяя:
А) метод параллельных рядов
Б) метод группировок
В) графический метод
3.2. Измерить тесноту связи между указанными признаками
Таблица№1
Для изучения капитальных вложений в производство из собственных средств предприятий в регионе проведена 5%-я механическая выборка, в результате которой получены следующие данные:
№ п/п | Нераспределенная прибыль, млн. руб. | Инвестиции в основные фонды, млн.руб. |
А | 1 | 2 |
1 | 2,2 | 0,06 |
2 | 2,0 | 0,04 |
3 | 4,3 | 0,44 |
4 | 5,0 | 0,6 |
5 | 6,0 | 0,90 |
6 | 2,3 | 0,12 |
7 | 3,6 | 0,20 |
8 | 4,2 | 0,36 |
9 | 5,8 | 0,80 |
10 | 4,7 | 0,60 |
11 | 2,5 | 0,18 |
12 | 3,8 | 0,40 |
13 | 4,5 | 0,53 |
14 | 4,8 | 0,65 |
15 | 4,4 | 0,42 |
16 | 5,4 | 0,70 |
17 | 5,2 | 0,50 |
18 | 4,1 | 0,35 |
19 | 3,3 | 0,20 |
20 | 5,6 | 0,70 |
21 | 3,9 | 0,40 |
22 | 4,8 | 0,73 |
23 | 4,5 | 0,62 |
24 | 4,7 | 0,70 |
25 | 3,4 | 0,30 |
1. Метод параллельных рядов. Произведем ранжирование капитальных вложений в производство по нераспределенной прибыли
Таблица№2
№ п/п | Нераспределенная прибыль, млн. руб. | Инвестиции в основные фонды, млн.руб. |
А | 1 | 2 |
1 | 2 | 0,04 |
2 | 2,2 | 0,06 |
3 | 2,3 | 0,12 |
4 | 2,5 | 0,18 |
5 | 3,3 | 0,2 |
6 | 3,4 | 0,3 |
7 | 3,6 | 0,2 |
8 | 3,8 | 0,4 |
9 | 3,9 | 0,4 |
10 | 4,1 | 0,35 |
11 | 4,2 | 0,36 |
12 | 4,3 | 0,44 |
13 | 4,4 | 0,42 |
14 | 4,5 | 0,53 |
15 | 4,5 | 0,62 |
16 | 4,7 | 0,6 |
17 | 4,7 | 0,7 |
18 | 4,8 | 0,65 |
19 | 4,8 | 0,73 |
20 | 5 | 0,6 |
21 | 5,2 | 0,5 |
22 | 5,4 | 0,7 |
23 | 5,6 | 0,7 |
24 | 5,8 | 0,8 |
25 | 6 | 0,9 |
После проведения ранжирования четко видна взаимосвязь нераспределенной прибыли от инвестиций в основные фонды. При большей прибыли инвестиции в основные фонды больше.
2. Метод группировок. Для образования групп предприятий по нераспределенной прибыли необходимо определить величину интервала по формуле Стерджесса:
I = x max - x min
n , где
х мах - наибольший показатель нераспределенной прибыли в млн. руб.
х min – наименьший показатель нераспределенной прибыли в млн. руб.