Курсовая работа: Статистический анализ выборочных совокупностей

- выборочная совокупность 1 имеет равномерное распределение с параметрами a=5,15 и b=19,22;

- выборочная совокупность 2 имеет нормальное распределение с параметрами a=12,54 и s=4,43;

- выборочная совокупность 3 имеет показательное распределение с параметром l=0,14.

Результаты сравнения коэффициентов асимметрии, эксцессов и коэффициентов вариации выборочных совокупностей не противоречат выдвинутым гипотезам:

- коэффициент асимметрии и коэффициент вариации V=0,33 выборочной совокупности 1 сравнимы с соответствующими параметрами равномерного распределения ();

- коэффициент асимметрии A* s =-0,04, эксцесс E* s =-0,26, выборочной совокупности 2 сравнимы с соответствующими параметрами нормального распределения ();

- коэффициент вариации V=0,57 выборочной совокупности 3 сравним с соответствующим параметром показательного распределения ().

Проверка гипотезы о равномерном распределении выборки 1

Нулевая гипотеза Н 0 :выборочная совокупность 1 имеет равномерное распределение с параметрами a=5,15 и b=19,22.
Число степеней свободы: r=3.
Уровень значимости α =0,05.
Критическая точка
Наблюдаемое значение критерия Пирсона
Критическая область :
Область принятия гипотезы :
Условие принятия Н 0 :
Условие непринятия Н 0 :
Результат проверки гипотезы: выборочная совокупность 1 имеет равномерное распределение с параметрами a=5,15 и b=19,22.

Проверка гипотезы о нормальном распределении выборки 2

Нулевая гипотеза Н 0 : выборочная совокупность 2 имеет нормальное распределение с параметрами a=12,54 и s=4,43.
Число степеней свободы: r=2.
Уровень значимости α =0,05
Критическая точка
Наблюдаемое значение критерия Пирсона
Критическая область:
Область принятия гипотезы :
Условие принятия Н 0 :
Условие непринятия Н 0 :
Результат проверки гипотезы: выборочная совокупность 2 имеет нормальное распределение с параметрами a=12,54 и s=4,43.

Проверка гипотезы о показательном распределении выборки 3

Нулевая гипотеза Н 0 :Выборочная совокупность 3 имеет показательное распределение с параметром l=0,14.
Число степеней свободы: r=5
Уровень значимости α =0,05
Критическая точка
Наблюдаемое значение критерия Пирсона
Условие принятия Н 0 :
Результат проверки гипотезы: выборочная совокупность 3 имеет показательное распределение с параметром l=0,14.

Заключение

С помощью программы Excel был проведен статистический анализ 3-х выборочных совокупностей и было установлено, что:

- выборочная совокупность 1 имеет равномерное распределение с параметрами a=5,15 и b=19,22;

- выборочная совокупность 1 имеет нормальное распределение с параметрами a=12,54 и s=4,43;

- выборочная совокупность 3 имеет показательное распределение с параметром l=0,14.


Список литературы

1. Вентцель Е.С., Овчаров Л.А. Задачи и упражнения по теории вероятностей: учеб. пособие для вузов. 4-е изд., перераб. и доп. М.: Высш. шк., 2002. - 448 с.

2. Гмурман В.Е. Теория вероятностей и математическая статистика: учеб. пособие для вузов. 9-е изд., стер. М.: Высш. шк., 2003. - 479 с.

3. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: учеб. пособие для студентов вузов. Изд. 4-е, стер. – М.: Высш. шк., 1997. - 400 с.

4. Горелова Г.В., Кацко И.А. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel. Учебное пособие для вузов. Издание 2-е исправленное и дополненное. Ростов на Дону: Феникс, 2002. - 400 с.

5. Елисеева Н.Н. и др. Теория статистики с основами теории вероятностей. - М.: ЮНИТИ, 2001. - 446 с.

6. Куликова О.В., Тимофеева Г.А., Чуев Н.П. Исследование выборочных совокупностей с применением программы Excel – Екатеринбург.: УрГУПС, 2003. - 76 с.

7. Макарова Н.В., Трофимец В.Я. Статистика в Excel: Учеб. пособие. – М.: Финансы и статистика, 2002. - 368 с.

8. Гнеденко Б.В. Очерки по истории математики в России. – М.; Л.: Гос. изд-во техн.-теорет. лит., 1946. – 245 с.

К-во Просмотров: 262
Бесплатно скачать Курсовая работа: Статистический анализ выборочных совокупностей