Курсовая работа: Теорема Силова
Доказательство. Ранее было показано (см. 3), что любая группа G разбивается на не пересекающие классы сопряженных элементов. Среди классов будут одноэлементные образованные элементами центра, причем их число неравно нулю, так как единица е группы G образуют одноэлементный класс.
Пусть число элементов центра равно t . Все элементы, не принадлежащие центру Z (G ), порождают классы сопряженных элементов. Обозначим , классы сопряженных элементов содержащие более одного элемента. Число элементов в каждом таком классе есть индекс централизатора любого элемента класса (по теореме 1.4.1. учитывая, что нормализатор и централизатора одного элемента совпадают):
.
Следовательно, по теореме Лагранжа , где .
Тогда , из этого раве?