Курсовая работа: Теория распределения информации
11
в) Определим вероятность занятия линий в пучке из V=11 , при условии N,V®¥.
Используем распределение Пуассона, как вероятность занятия i линий в бесконечном пучке линий за промежуток времени t:
,
,
где: l - параметр потока, выз/час
lt – средняя интенсивность нагрузки поступающей на пучок линий (А=lt).
Легко показать, что:
,
Произведем расчет:
Р0 = * е-4 = 0,018 Р1 = 0,018 *
= 0,036
Р4 = * 0,018 = 0,192 Р6 = 0,018 *
= 0,102
Р8 = 0,018 * = 0,029 Р10 = 0,018 *
= 0,0052
Р12 = 0,018 * = 0,0006
M( i ) = D( i ) = 4
Результаты вычислений сведем в таблицу 3:
Таблица3
P( i ) | 0.018 | 0.036 | 0.192 | 0.102 | 0.029 | 0.0052 | 0.0006 |
i | 0 | 1 | 4 | 6 | 8 | 10 | 12 |
По данным таблиц 1, 2, 3 построим графики огибающей вероятности для трех случаев: а) N>>V, б) N@V, в) N, V ®¥ ; рис. 1.
Задание 2.
На коммутационную систему поступает простейший поток вызовов с интенсивностью А.
Рассчитать вероятность поступления не менее к вызовов за промежуток времени [ 0, t* ]:
Рк (t* ), где t* = 0,5; 1,0; 1,5; 2,0
Построить функцию распределения промежутков времени между двумя последовательными моментами поступления вызовов:
F(t* ), t* = 0; 0,1; 0,2; …
Рассчитать вероятность поступления не менее к вызовов за интервал времени [ 0, t* ]:
Pi ³ k (t* ), где t* = 1
Примечание: 1. Для расчета значений A и V взять из задания 1.
2.Число вызовов к определить из выражения: к = [V/2] - целая часть числа.
Для построения графика взять не менее пяти значений F(t* ). Результаты привести в виде таблицы:
F(t* ) |
t* |
Расчет Pi ³ k (t* ) провести не менее чем для восьми членов суммы.
Решение: