Курсовая работа: Топологические пространства
Аналогично доказывается
Теорема 1.4. Если связное множество М содержится в объединении двух дизъюнктных открытых множеств О 1 и О 2 топологического пространства Х, то оно целиком содержится только в одном из множеств, входящих в объединение.
Теорема 1.5. Пусть f : Х→Y непрерывное отображение и f (X ) = Y . Тогда если Х связно, то Y связно.
Доказательство от противного. Предположим, что пространство Y несвязно. Тогда оно разбивается на два непустых открытых дизъюнктных множества
Y = O 1 O 2 .
В силу того, что f непрерывное отображение и f (X ) = Y , прообразы G 1 = f –1 (O 1 ) и G 2 = f –1 (O 2 ) будут непустыми дизъюнктными открытыми множествами, которые в сумме дают всё пространство Х , что противоречит его связности.
1.3. Компактность топологических пространств
Определение 8. Топологическое пространство называется компактным , если всякое покрытие этого пространства открытыми множествами содержит конечное подпокрытие.
Определение 9. Множество А в топологическом пространстве Х называется компактным , если оно компактно в индуцированной топологии как подпространство.
Теорема 1.6. Подмножество А топологического пространства Х компактно тогда и только тогда, когда из любого его покрытия множествами, открытыми в Х, можно выбрать конечное подпокрытие.
Теорема 1.7. Замкнутое подмножество А компактного пространства Х компактно.
Доказательство. В силу теоремы 1.6, достаточно из произвольного покрытия множества А открытыми в Х множествами выбрать конечное подпокрытие. Для этого добавим к этим множествам открытое множество Х \ А и получим открытое покрытие всего пространства Х . В силу компактности пространства Х , из этого покрытия можно выделить конечное подпокрытие, причём мы всегда можно считать, что в это подпокрытие входит множество Х \ А . Пусть, например,
.
Очевидно, что множества образуют искомое конечное подпокрытие множества А .
Определение 10. Топологическое пространство называется хаусдорфовым , если любые две его различные точки обладают непересекающимися окрестностями.
Теорема 1.8. Компактное подмножество А хаусдорфова пространства Х замкнуто.
Теорема 1.9. Непрерывный образ компактного пространства компактен, т.е. если f : Х→Y – непрерывное отображение и пространство Х компактно, то и множество f (Х ) компактно.
Доказательство теорем 1.6 – 1.9 можно найти в [2].
§2. Связность непрерывных отображений
2.1. Определение связности отображения и простейшие свойства
Пусть f : Х→Y – непрерывное отображение. Для открытого в Y множества U и точки y ÎY прообраз f –1 (U ) называется трубкой (над U ), а прообраз f –1 (y ) называется слоем (над точкой y ).
Определение 11. . Непрерывное отображение f : Х→Y называется несвязным над точкой y ÎY , если существует такая окрестность Oy точки y , что трубка f –1 (U ) является несвязной над каждой окрестностью U Í Oy точки y .
Замечание 2. В данном определении достаточно рассматривать только связные окрестности U Í Oy , т.к., если U = U 1 U 2 , где U 1 , U 2 – непустые дизъюнктные открытые в U (а значит и в Y ) множества, то
f –1 (U ) = f –1 (U 1 ) f –1 (U 2 ), f –1 (U 1 ) ∩ f –1 (U 2 ) = Æ,
т.е. f –1 (U ) несвязно автоматически.
Определение 12. Непрерывное отображение f : Х→Y называется связным над точкой y ÎY , если оно не является несвязным над точкой y , т.е. для любой окрестности Oy точки y существует такая связная окрестность U Í Oy точки y , что трубка f –1 (U ) связна.
Определение 13. Непрерывное отображение f : Х→Y называется связным , если оно связно над каждой точкой y Î Y .
Теорема 2.1 (критерии несвязности). Пусть отображение f : Х→Y непрерывно и точка y Î Y . Тогда следующие условия эквивалентны:
(1) отображение f несвязно над точкой y Î Y;
(2) существует такая окрестность Oy точки y Î Y , что каждая трубка f –1 (U ) над окрестностью U Í Oy точки у распадается на два дизъюнктных непустых открытых в этой трубке множества;
(3) существует такая окрестность Oy точки y Î Y , что каждая трубка f –1 (U ) над окрестностью U Í Oy точки у распадается на два дизъюнктных непустых замкнутых в этой трубке множества;
(4) существует такая окрестность Oy точки y Î Y, что в каждой трубке f –1 (U ) над окрестностью U Í Oy точки у существует нетривиальное открыто-замкнутое в этой трубке множество;
(5) существует такая окрестность Oy точки y Î Y , что для каждой трубки f –1 (U ) над окрестностью U Í Oy точки у существует непрерывная сюръективная функция φ : f –1 (U ) ® {1, 2}.