Курсовая работа: Топологические пространства

Из (2) следует (3). Пусть трубка f –1 (U ) распадается на два дизъюнктных непустых открытых в этой трубке множества. Тогда, по теореме 1.2, трубка f –1 (U ) распадается на два дизъюнктных непустых замкнутых в этой трубке множества.

Из (3) следует (4). Пусть трубка f –1 (U ) распадается на два дизъюнктных непустых замкнутых в этой трубке множества. Тогда, по теореме 1.2, в трубке f –1 (U ) существует нетривиальное открыто-замкнутое в этой трубке множество.

Из (4) следует (5). Пусть в трубке f –1 (U ) существует нетривиальное открыто-замкнутое в этой трубке множество. Тогда, по теореме 1.2, для трубки f –1 (U ) существует непрерывная сюръективная функция φ : f –1 (U ) ® {1, 2}.

Из (5) следует (1). Пусть существует такая окрестность Oy точки y Î Y , что для трубки f –1 (U ) над некоторой окрестностью U Í Oy существует непрерывная сюръективная функция φ : f –1 (U ) ® {1, 2}. Тогда, по теореме 1.2, трубка f –1 (U ) распадается на два дизъюнктных непустых открытых в этой трубке множества. Отсюда, по определению несвязного над точкой отображения, следует, что отображение f несвязно над точкой y Î Y .

Определение 14. Отображение f : Х→Y называется послойно связным , если каждый слой f –1 (y ), где y Î Y , этого отображения является связным множеством.

Теорема 2.2 (о сохранении связности). Пусть отображения f : X ® Y и g : Z ® Y непрерывные и существует непрерывное сюръективное отображение φ : X ® Z , при котором f = g φ . Тогда, если отображение f связно над точкой y Î Y (слой f –1 (y ) связен), то и отображение g связно над точкой y Î Y (слой g –1 (y ) связен). В частности, если отображнение f связно (послойно связно), то и отображение g связно (послойно связно).

Доказательство. Пусть отображения f : X ®Y связное над точкой y Î Y , тогда для любой окрестности Oy точки y существует связная окрестность U Í Oy точки y , трубка над которой f –1 (U ) связна. Отображение φ непрерывное, значит (по теореме 1.5) образ связного множества f –1 (U ) (связного слоя f –1 (y )) связен, т.е. множество φ (f –1 (U )) (множество φ ( f –1 (y ))) – связное.

Предположим, что отображение g несвязно над точкой y Î Y , т.е. существует такая связная окресность Oy точки y , что трубка g –1 (U ) является несвязной над каждой окрестностью U Í Oy точки y . (Предположим, что слой g –1 (y ) несвязен над точкой y Î Y ).

По условию, f = g φ , следовательно,

f –1 (U ) = (g φ ) –1 (U ) = φ –1 (g –1 (U )).

Отсюда,

φ (f –1 (U )) = φ (φ –1 (g –1 (U ))) =g –1 (U )

(для слоя φ ( f –1 (y )) = g –1 (y )). Получили противоречие, т.к. множество φ ( f –1 (U )) связное (слой φ ( f –1 (y )) связен), а множество g –1 (U ) (слой g –1 (y )) – нет.

Пусть отображнение f связно (послойно связное), тогда, по определению 10 (11), оно связно над каждой точкой y Î Y (каждый слой f –1 (y ) связен). Возьмём произвольную точку y Î Y . Если отображение f связно над этой точкой y Î Y (слой f –1 (y ) связен), то и отображение g связно над этой же точкой (слой g –1 (y ) связен). В силу произвольности выбора точки y , заключаем, что отображение g связно над каждой точкой y Î Y (послойно связно). €

2.2. Замкнутые отображения. Связь связности и послойной связности

Определение 15. Отображение f : X Y называется замкнутым , если для каждого замкнутого множества F Í Х образ f (F ) является замкнутым множеством в Y .

Определение 16. Отображение f : X Y называется замкнутым над точкой y ÎY , если для всякой окрестности О слоя f 1 (y ) Ì Х найдётся окрестность Oy точки y , трубка над которой f 1 (Oy ) содержится в данной окрестности О слоя f 1 (y ):

f 1 (y ) Í f 1 (Oy ) Í О.

Связь между замкнутостью в точке и общей замкнутостью устанавливает следующая

Лемма 2.1. Непрерывное отображение f : X Y замкнуто тогда и только тогда, когда оно замкнуто над каждой точкой y ÎY .

Доказательство. Необходимость. Пусть отображение f : X Y замкнуто. Возьмём произвольную точку y Î Y и рассмотрим окрестность О множества f 1 (y ). Множество F = X \ О замкнуто в Х и F f –1 (y ) = Æ. Поэтому множество f (F ) замкнуто в Y и точка y Ï f (F ). Значит окрестность Oy = Y \ f (F ) точки y обладает таким свойством f 1 (Oy ) F = Æ, следовательно, f 1 (Oy ) Ì О. Таким образом, отображение f замкнуто над каждой точкой y ÎY в силу того, что точка y взята произвольно.

Достаточность. Пусть непрерывное отображение f замкнуто над каждой точкой y ÎY . Предположим, что образ f (F ) некоторого замкнутого в Х множества F не замкнут в Y . Пусть точка y Î [f ( F ) ] \ f (F ), т.е. принадлежит границе множества f (F ). Множество X \ F является окрестностью множества f 1 (y ). Следовательно, существует такая окресность Oy точки y , что f 1 (Oy ) Ì X \ F . Но тогда Oyf (F ) = Æ и поэтому точка y Ï [f (F )].

Получили противоречие. Отсюда, отображение f замкнуто. €

Следующие утверждения указывают на некоторые важнейшие примеры замкнутых отображений.

Предложение 2.1. Непрерывное отображение f : X ® Y компактного пространства X в хаусдорфово пространство Y является замкнутым.

Доказательство. Рассмотрим произвольное множество F , замкнутое в Х . Оно будет компактным (по теореме 1.7). Тогда непрерывный образ f (F ) компактного множества F будет компактен в Y (по теореме 1.9). Пространство Y хаусдорфово, следовательно, множество f (F ) – замкнуто (в силу теоремы 1.8). Таким образом, отображение f является замкнутым. 

Следствие 2.1. Биективное непрерывное отображение f : X ® Y компактного пространства X на хаусдорфово пространство Y является гомеоморфизмом.

Доказательство. Рассмотрим произвольное замкнутое подмножество F компактного пространства X . В силу предложения 2.1, образ f (F ) – замкнутое множество. Тогда, по теореме 1.1, отображение f –1 является непрерывным, следовательно, f – гомеоморфизм.ÿ

Предложение 2.2. Пусть отображение f : X ® Y замкнуто над точкой y Î Y и пусть множество Z замкнуто в X. Тогда подотображение g = f | Z : Z ® Y замкнуто над точкой y. В частности, если отображение f замкнуто (над каждой точкой y Î Y), то и отображение g замкнуто.

Доказательство. Возьмём произвольную точку y Î Y и рассмотрим окрестность U Ì Z слоя g –1 (y ). Тогда в Х найдётся открытое множество U ¢ такое, что U = U ¢ Z . Множество O = U ¢ (X \ Z ) будет окрестностью слоя f –1 (y ) . Отображение f замкнутое над точкой y Î Y , поэтому найдётся такая окрестность Oy точки y , что f –1 (Oy ) Ì O . Тогда g –1 (Oy ) Ì Z O = Z U ¢ = U .

В силу произвольности выбора точки y Î Y , можно заключить, что если отображение f замкнутое над каждой точкой y Î Y , то и отображение g замкнутое над каждой точкой y Î Y . 

Предложение 2.3. Пусть отображение f : X ® Y замкнуто над точкой y Î T Í Y , где T – произвольное множество в Y . Тогда под-отображение g = f | : f –1 (T ) ® T замкнуто над точкой y . В частности, если отображение f замкнуто (над каждой точкой y Î T ), то и отображение g тоже замкнуто (над каждой точкой y Î T ).

Доказательство. Возьмём произвольную точку y Î T Í Y и некоторую окрестность О слоя g 1 (y ) = f 1 (y ), такую что

O = O ' f –1 (T ),

К-во Просмотров: 266
Бесплатно скачать Курсовая работа: Топологические пространства