Курсовая работа: Топологические пространства
§1. Топологические пространства
(предварительные сведения)
1.1. Непрерывные отображения топологических
пространств
Пусть Х и Y топологические пространства.
Определение 1. Отображение f : Х→Y называется непрерывным , если у всякого множества О , открытого в пространстве Y , полный прообраз f –1 (О ) открыт в пространстве Х.
Замечание 1. Для любого подмножества А пространства Y и отображения f : X → Y справедливо следующее равенство:
(1).
Теорема 1.1. Отображение f : X → Y является непрерывным тогда и только тогда, когда у всякого множества F , замкнутого в Y , полный прообраз f – 1 (F ) замкнут в Х.
Доказательство. Необходимость. Пусть отображение f : X → Y является непрерывным, т.е. для любого множества О , открытого в Y , прообраз f –1 (O ) открыт в Х , и пусть F произвольное замкнутое в Y множество. Тогда множество CF открыто в Y , и множество открыто в Х , в силу непрерывности отображения f и равенства (1). Следовательно, множество f –1 (F ) замкнуто в Х .
Достаточность. Пусть для любого множества F , замкнутого в Y , полный прообраз f – 1 (F ) замкнут в Х . Рассмотрим произвольное открытое в Y множество О. Тогда множество CO будет замкнутым в Y . Поэтому замкнутое в Х множество. Следовательно, множество открыто в Х . Таким образом, для любого множества О , открытого в Y , полный прообраз открыт в Х и отображение f : X → Y непрерывное по определению.
1.2. Связность топологических пространств
Определение 4. Топологическое пространство Х называется несвязным , если его можно разбить на два непустых непересекающихся открытых множества:
Х = О 1 О 2 .
Определение 5. Пространство Х называется связным , если такого разбиения не существует.
Заметим, что если несвязное пространство Х разбито на два непустых открытых множества О 1 и О 2 , не имеющих общих точек, то О 1 = CO 2 и O 2 = CO 1 . Поэтому можно дать другое определение связного пространства:
Определение 6. Топологическое пространство Х называется связным , если в нём одновременно открытым и замкнутым множеством является лишь само пространство или пустое множество.
Определение 7. Множество Н в топологическом пространстве Х называется связным , если оно является связным пространством относительно индуцированной топологии.
Теорема 1.2. Для топологического пространства Х следующие условия эквивалентны:
(1) существуют непустые открытые множества О 1 и О 2 , для которых О 1 ∩ О 2 = Æ и О 1 О 2 = Х ;
(2) существуют непустые замкнутые множества F 1 и F 2 , для которых F 1 ∩ F 2 = Æ и F 1 F 2 = Х ;
(3) в Х существует нетривиальное открыто-замкнутое множество G;
(4) существует непрерывная сюръективная функция φ : Х ® {1, 2}.
Доказательство. Из (1) следует (2). Пусть О 1 и О 2 непустые открытые множества, для которых О 1 ∩ О 2 = Æ и О 1 О 2 = Х . Рассмотрим множества F 1 = СО 1 и F 2 = СО 2 . Они являются непустыми замкнутыми множествами, причём F 1 ∩ F 2 = Æ и F 1 F 2 = Х.
Из (2) следует (3). Пусть F 1 и F 2 непустые замкнутые множества, для которых F 1 ∩ F 2 = Æ и F 1 F 2 = Х . Рассмотрим множество G = F 1 Ì Х . Множество F 1 замкнутое по условию и открытое, как дополнение до замкнутого множества F 2 (F 1 = CF 2 ). Поэтому множество G = F 1 является нетривиальным открыто-замкнутым множеством в Х .
Из (3) следует (4). Пусть G нетривиальное открыто-замкнутое множество в Х . Тогда множество Q = CG тоже нетривиальное открыто-замкнутое в Х .
Рассмотрим функцию φ : Х ® {1, 2}, при которой
φ (х ) =
Функция φ является непрерывной и сюръективной, т.к. для любых элементов 1 и 2 множества {1, 2} прообразы их соответственно равны множествам G и Q , открытым в Х .
Из (4) следует (1). Пусть φ : Х ® {1, 2} – непрерывная сюръективная функция и пусть множество M = {1, 2}, т.е. φ (Х ) = М . Множества A = {1} и B = {2} – непустые, непересекающиеся открытые в М и . Функция φ сюръективная, поэтому справедливо следующее равенство:
Х = φ –1 (М ) = φ –1 (А В ) = φ –1 (А ) φ –1 (В ),
причём φ –1 (А ) и φ –1 (В ) непустые непересекающиеся множества. В силу того, что функция φ непрерывная, множества О 1 = φ –1 (А ) и О 2 = φ –1 (В ) непустые, непересекающиеся открытые в Х и Х = О 1 О 2 .
Теорема 1.3. Пусть в топологическом пространстве Х даны два дизъюнктных замкнутых множества F 1 и F 2 и непустое связное множество М, содержащееся в объединении F 1 F 2 . Тогда М содержится только в одном из множеств, входящих в объединение, т.е. либо в F 1 , либо в F 2 .
Доказательство. Пусть F 1 и F 2 дизъюнктные замкнутые в Х множества и непустое связное множество М Í F 1 F 2 . Тогда
М = (М ∩ F 1 ) (M ∩ F 2 ).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--