Курсовая работа: Уменьшение оценки взаимной спектральной плотности стационарного случайного процесса
В дальнейшем функцию, в правой части (1), будем обозначать
Используя определение стационарного в узком смысле СП , смешанный момент го порядка, , будем обозначать
Смешанный семиинвариант го порядка, , стационарного в узком смысле СП будем обозначать
Случайный процесс , называется стационарным в широком смысле , если и
Замечание 1. Если , является стационарным в узком смысле СП и то , является стационарным в широком смысле, но не наоборот.
Спектральной плотностью стационарного случайного процесса , называется функция вида
,
при условии, что
Семиинвариантной спектральной плотностью - го порядка , , стационарного СП , называется функция вида
при условии, что
Для смешанного семиинварианта -го порядка, , стационарного СП справедливо следующее соотношение
.
Для эти соотношения примут вид
.
2. УМЕНЬШЕНИЕ СМЕЩЕНИЯ ОЦЕНКИ ВЗАИМНОЙ СПЕКТРАЛЬНОЙ ПЛОТНОСТИ
Рассмотрим действительный стационарный в широком смысле случайный процесс,, с математическим ожиданием , , взаимной ковариационной функцией , и взаимной спектральной плотностью .
Предположим, имеются Т последовательных, полученных через равные промежутки времени наблюдений за составляющей , рассматриваемого процесса . Как оценку взаимной спектральной плотности в точке рассмотрим статистику
(2.1)
где , - произвольная, не зависящая от наблюдений четная целочисленная функция, для , а