Курсовая работа: Уменьшение оценки взаимной спектральной плотности стационарного случайного процесса
s – целое число, - целая часть числа .
Статистика , называемая выборочной взаимной спектральной плотностью или периодограммой, задается соотношением
(2.3)
определено равенством (2.2).
Предположим, если оценка взаимной спектральной плотности , построенная по T наблюдениям, является асимптотически несмещенной, то математическое ожидание ее можно представить в виде
(2.4)
где некоторые действительные функции, не зависящие от T,
В качестве оценки взаимной спектральной плотности возьмем статистику
,
и исследуем первый момент построенной оценки.
Математическое ожидание построенной оценки будет следующее
Использовав соотношение (2.4), получим
где
Поскольку
следовательно, оценка является асимптотически несмещенной со смещением, убывающим как .
Так как равенство (2.4) справедливо и при , то, рассматривая оценку
где
, то оценка является асимптотически несмещенной со смещением, убывающим на . Далее рассмотрим оценку
(2.5)
Найдем математическое ожидание построенной оценки :