Курсовая работа: Уравнения и неравенства с модулем на централизованном тестировании
Во втором разделе представлены методы решения простейших уравнений и неравенств с модулями, решение которых не требует использование трудоемкого процесса раскрытия модулей.
В третьем разделе представлено графическое решение уравнений и неравенств, содержащих знак абсолютной величины. Графическое решение уравнений и неравенств с модулем в некоторых случаях гораздо более простое, чем аналитическое. В этом разделе рассмотрены построение графиков функций , и . Много внимания уделено построению графиков функций, представляющих собой сумму линейных выражений под знаком абсолютной величины. Так же приведены примеры построения графиков функций с ``вложенными'' модулями. Приведены теоремы об экстремумах функций, содержащих сумму линейных выражений под знаками абсолютных величин, позволяющие эффективно решать задачи как на нахождение экстремумов подобных функции, так и решать задачи с параметрами.
В четвертом разделе представлены дополнительные методы решения уравнений и неравенств, содержащих знак абсолютной величины. В первую очередь описан трудоемкий и не всегда рациональный, а в некоторых случаях и неприменимый метод раскрытия модулей, иногда называемый метод интервалов, с помощью которого можно решить любое уравнение и неревенство с модулем. Описан метод использования тождества ; рассмотрены метод геометрической интерпретации, использование тождества , применение теоремы о знаках, метод перехода к следствию, метод интервалов, метод домножения на положительный множитель.
В пятом разделе приведены примеры решения типовых тестовых задач связанных с понятием абсолютная величина. Приведены решения как ``стандартных'' задач, в решении которых необходимо получить какую-либо комбинацию решений, так и заданий с параметрами. Для некоторых задач приведено несколько способов решения, иногда указаны типичные ошибки возникающие в процессе решения. Для всех заданий приведено наиболее эффективное, по быстроте, решение.
Абсолютная величина и её свойства
Модуль. Свойства модуля
Определение. Модуль числа или абсолютная величина числа равна , если больше или равно нулю и равна , если меньше нуля:
Из определения следует, что для любого действительного числа , .
Теорема Абсолютная величина действительного числа равна большему из двух чисел или .
1. Если число положительно, то отрицательно, т. е. . Отсюда следует, что .
В этом случае , т. е. совпадает с большим из двух чисел и .
2. Если отрицательно, тогда положительно и , т. е. большим числом является . По определению, в этом случае, --- снова, равно большему из двух чисел и .
Следствие Из теоремы следует, что .
В самом деле, как , так и равны большему из чисел и , а значит, равны между собой.
Следствие Для любого действительного числа справедливы неравенства , .
Умножая второе равенство на (при этом знак неравенства изменится на противоположный), мы получим следующие неравенства: , справедливые для любого действительного числа . Объединяя последние два неравенства в одно, получаем: .
Теорема Абсолютная величина любого действительного числа равна арифметическому квадратному корню из : .
В самом деле, если , то, по определению модуля числа, будем иметь . С другой стороны, при , , значит .
Если , тогда и и в этом случае .
Эта теорема дает возможность при решении некоторых задач заменять на .
Геометрически означает расстояние на координатной прямой от точки, изображающей число , до начала отсчета.
Если , то на координатной прямой существует две точки и , равноудаленной от нуля, модули которых равны.
Если , то на координатной прямой изображается точкой .
Свойства модуля
Из этого свойства следует, что ; .