Курсовая работа: Уравнивание геодезических сетей сгущения упрощенным способом
Прил. - приложение
Т.е. – то есть
Т.о. – таким образом
Введение
Целью курсовой работы является освоение методики математической обработки результатов геодезических измерений в сетях сгущения при выполнении следующих заданий:
1. вычисление координат дополнительных пунктов, определённых прямой и обратной многократными угловыми засечками;
2. раздельного уравнивания системы ходов полигонометрии второго разряда с одной узловой точкой;
3. уравнивания превышений технического нивелирования по способу полигонов профессора В.В.Попова.
Для проведения работы, связанной с использованием земли требуется изучение форм, рельефа, расположения объектов и производство специальных измерений, вычислительная обработка и составление карт, планов и профилей, которые служат основной продукцией геодезических работ и дают представление о форме и размерах поверхностей всей земли или отдельных ее частей.
Материалом для выполнения заданий служат результаты полевых измерений углов и превышений, которые приводятся как исходные данные.
В наше время, когда земля приобретает все большую ценность, стали очень актуальны геодезические измерения и вычисления. Без базовых знаний, которые я освоила в результате выполнения курсовой работы, невозможно решение многих геодезических задач, что мне придется решать в моей будущей профессии. На данный момент актуальность этой курсовой работы состоит в том, что я ознакомилась с теми видами работ, которые предстоит выполнять на летней практике.
С внедрением в геодезическую науку более точных электронных приборов ошибки измерений могут значительно уменьшиться.
1. Вычисление координат дополнительного пункта, определяемого прямой многократной засечкой
1.1 Исходные данные
Прямая засечка - это задача по определению третьего пункта по двум данным пунктам и двум измеренным при этих пунктах углам. Для контроля правильности вычисления координат засечку делают многократной.
Я нашла индивидуальные поправки:
∆β’= 3*N = 3*4 = 12’
∆x = ∆y = 25,50*N = 25,50*4 = 102м
Таблица 1 – Исходные данные для решения прямой засечки.
обозначения | измеренные направления |
исправленные направления с учётом № | координаты | ||||||
градусы | минуты | секунды | градусы | минуты | секунды | X | Y | ||
A | P | 0 | 0 | 0 | 0 | 0 | 0 | 5552,55 | 2402,09 |
B | 88 | 44 | 20 | 88 | 56 | 20 | |||
B | A | 0 | 0 | 0 | 0 | 0 | 0 | 4853,04 | 2151,60 |
P | 43 | 16 | 20 | 43 | 04 | 20 | |||
C | 72 | 57 | 28 | 72 | 57 | 28 | |||
C | B | 0 | 0 | 0 | 0 | 0 | 0 | 4813,24 | 3008,33 |
P | 91 | 15 | 39 | 91 | 03 | 39 |
Порядок решения задачи:
1. составление схемы расположения определяемого и исходных пунктов
2. выбор наилучших вариантов засечки
3. решение наилучших вариантов засечки
4. оценка ожидаемой точности полученных результатов.
1.2 Составление схемы расположения определяемого и исходных пунктов
Составление схемы я произвела на листе миллиметровой бумаги формата А4. При этом оцифровала в масштабе 1:10000. По координатам из таблицы 1 нанесла исходные пункты А, В, С. Искомый пункт Р нанесла по углам с помощью геодезического транспортира. Схема представлена в приложении А.
1.3 Выбор наилучших вариантов засечки
Для определения наилучших вариантов засечки произвела построение инверсионных треугольников. Для этого на схеме из приложения А сделала следующие построения:
- от пункта Р по направлениям РА, РВ, РС отложила отрезки r, длину которых вычислила по формуле:
, (1) где
С – произвольно выбранное число