Курсовая работа: Векторные многоугольники в физических задачах
Министерство образования Республики Беларусь
Учреждение образования
"Брестский государственный университет имени А.С. Пушкина"
Физический факультет
Кафедра теоретической физики и астрономии
Курсовая работа
ВЕКТОРНЫЕ МНОГОУГОЛЬНИКИ В ФИЗИЧЕСКИХ ЗАДАЧАХ
по теоретической физике
Специальность: Физика и информатика
Выполнил
Научный руководитель
Брест 2010
Содержание
Введение
1. О решении физических задач в средней школе
1.1 О возможности применения векторных многоугольников для решения физических задач
1.2 Роль решения задач в процессе обучения физике
1.3 Традиционный способ решения задач кинематики и динамики в школьном курсе физики
2. О векторных способах решения задач механики
2.1 Векторные треугольники скоростей и перемещений в задачах
2.2 Векторные многоугольники сил в задачах
2.3 Векторные многоугольники импульсов в задачах
2.4 Векторные диаграммы импульсов в задачах о столкновениях частиц
Заключение
Литература
Введение
Межпредметные связи физики и математики вполне естественны: физика не только экспериментальная, но и точная наука, широко применяющая различные математические методы. Математика является языком физики, и свободное владение математическим аппаратом облегчает понимание физической сущности явлений и процессов. Однако, изучая, разрабатывая и используя новый математический аппарат, физики иногда незаслуженно забывают о ранее найденных и веками эффективно служивших делу физической науки математических способах и приемах. Изучение в школе дифференциального и интегрального исчисления, несомненно, способствует приобщению школьников к современным методам научных исследований, решение многих физических задач при этом существенно упрощается. Но в механике есть ряд задач повышенной для школьников трудности, которые решаются значительно проще не с помощью дифференцирования и интегрирования, а при использовании несложных геометрических приемов, вполне доступных учащимся старших классов (особенно классов с углубленным изучением физики). Примером может служить "забытый" в современной средней школе метод решения задач кинематики и динамики, основанный на построении так называемых векторных многоугольников перемещений, скоростей, ускорений, сил, импульсов.
При изучении механики в школьном курсе физики предполагается знакомство с векторным способом кинематического описания движения, с векторной формой записи законов и формул динамики, но значительно больше внимания и времени уделяется традиционным координатному и естественному способам. Вместе с тем в ряде случаев векторный способ имеет преимущество перед координатным, не только упрощая решение конкретной задачи, но и превращая иногда сложные на первый взгляд задачи в подстановочные, решаемые практически устно.
В данной работе будут даны краткие теоретические основы и некоторые методические рекомендации по возможности применения геометрических (векторных) способов решения избранных задач кинематики и динамики в школьном курсе физики. На примерах решения конкретных задач механики будет показана эффективность применения в ряде случаев указанных способов.
1. О решении физических задач в средней школе
1.1 О возможности применения векторных многоугольников для решения физических задач
Применение векторных способов, требующих знания основ тригонометрии (в частности, теорем синусов и косинусов), для решения задач механики в непрофильном 9 классе базовой школы вряд ли эффективно в силу недостаточной математической подготовки учащихся. Эти способы рассчитаны на учащихся классов с углубленным изучением физики (тогда вполне возможно их изучение и в 9 классе) или на старшеклассников: на уроках обобщающего повторения в 11 классе общеобразовательной школы, на курсах по выбору, при подготовке к олимпиадам. Естественно, что эти способы должны широко применяться при решении задач со студентами физических специальностей ВУЗов на практических занятиях по общей физике и в физическом практикуме по решению задач.
1.2 Роль решения задач в процессе обучения физике
В последнее время наблюдается тенденция усиления внимания к решению задач при обучении физике, и им отводится значительная часть курса. Решение задач выступает и как цель, и как метод обучения. Метод решения задач с успехом используется учителями при изложении нового учебного материала и его закреплении, при проведении фронтальных лабораторных работ и особенно физических практикумов.
Физической задачей в учебной практике обычно называют небольшую проблему, которая в общем случае решается с помощью логических умозаключений, математических действий и эксперимента на основе законов и методов физики. Задачи условно подразделяются на стандартные (для решения которых достаточно применить известные на данном уровне знаний формулы и уравнения, выражающие физические закономерности) и нестандартные (для решения которых необходимы не только знание физических законов и формул, но и умение делать не объединенные известными алгоритмами предположения, сопоставления, рассуждения и умозаключения). Вполне естественно, что нестандартные для данного уровня знаний и умений задачи могут быть отнесены к стандартным на другом, более высоком уровне.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--