Курсовая работа: Векторные многоугольники в физических задачах
, , (2.4 9)
где . В силу закона сохранения импульса импульсы обеих частиц в Ц-системе остаются после столкновения равными по модулю и направленными в противоположные стороны, в силу закона сохранения энергии модули импульсов в Ц - системе при столкновении не меняются. Таким образом, в Ц-системе результат столкновения сводится лишь к повороту скоростей обеих частиц, причем после поворота скорости остаются направленными в противоположные стороны. Если единичный вектор выражает направление скоростипервой частицы после столкновения, то в Ц-системе.
,. (2.4 10)
Чтобы вернуться к JI-системе, нужно к этим выражениям добавить скоростьцентра масс:
(2.4 11)
Этим исчерпываются сведения, которые можно получить из одних только законов сохранения импульса и энергии. Направление вектора зависит от условий взаимодействия частиц (от взаимного расположения во время столкновения и т.п.).
Для геометрической интерпретации результатов перейдем опять к импульсам. Из (2.4 11) получим:
(2.4 12)
где - приведенная масса частицы. Векторная диаграмма импульсов, соответствующая (2.4 12), приведена на рисунке 9. Здесь
,,.
При заданных и радиус окружности и положения точек А и В неизменны, а точка С может иметь любое положение на окружности.
С
А О В
Рисунок 9.
В частном случае, когда частица с массойдо столкновения покоится в JI-системе, имеем:
,, (2.4 13)
т.е. на диаграмме т. В лежит на окружности; ОВ = ОС - радиус, векторсовпадает с импульсомпервой частицы до удара. При этом точка А может находиться внутри (если ) или вне (если ) окружности (рисунок 10). Несложно показать, что углы и отклонения частиц после столкновения по отношению к (к направлению удара) могут быть выражены через угол поворота первой частицы в Ц-системе:
,, (2.4 14)
С С
А О В А О В
Рисунок 10.
Модули скоростей частиц после удара в Л-системе также могут быть выражены через угол и модуль относительной скоростидо удара:
,
. (2.4 15)
Отметим, что суммаопределяет угол разлета частиц после столкновения. При эта сумма больше, при - меньше , угол разлета частиц равной массы прямой.
Заключение
В ряде случаев векторный способ имеет преимущество перед координатным, не только упрощая решение конкретной задачи, но и превращая иногда сложные на первый взгляд задачи в подстановочные, решаемые практически устно.
В работе рассмотрены возможности использования одного из не-стандартных методов решения задач механики в курсе физики средней школы. Основные результаты можно сформулировать следующим обра-зом:
1. Показана роль решения задач при обучении физике, приведены алгоритмы решения задач координатным способом.
2. Сформулированы теоретические основы векторных способов решения избранных задач кинематики и динамики.