Курсовая работа: Векторные многоугольники в физических задачах

, (2.2.1)

где - масса материальной точки, - ее ускорение, - действующая на материальную точку сила (или равнодействующая нескольких сил, определяемая их геометрической суммой). Таким образом, при наличии нескольких складываемых сил можно построить их векторный многоугольник. При этом ускорение равно нулю, если равнодействующая сила равна нулю.

2.3 Векторные многоугольники импульсов в задачах

Как известно, одна из форм второго закона Ньютона имеет вид:

(2.3.1)

где - импульс тепа (материальной точки), - его изменение за время - средняя за время сипа, действующая на тело. Формула (2.3.1) представляет собой математическое выражение так называемой теоремы об изменении импульса: изменение импульса тепа равно импульсу средней сипы, приложенной к телу.

Аналогичные формула и теорема имеют место и для системы теп, но в этом случае - суммарный импульс тел системы, - средняя за время геометрическая сумма внешних сил, действующих на тепа системы (так называемый главный вектор внешних сил). При импульс тепа (или системы тел) сохраняется: , .

2.4 Векторные диаграммы импульсов в задачах о столкновениях частиц

Остановимся на механическом описании процессов неупругого и упругого соударений, имеющем прикладное значение в разных разделах физики. Рассмотрим сначала "самопроизвольный" (без воздействия внешних сил) распад частицы на две составные части - на две частицы, движущиеся после распада независимо друг от друга. Наиболее просто процесс выглядит в системе отсчета, в которой частица до распада покоилась; в этой системе будет покоиться центр масс двух образовавшихся после распада частиц. Назовем эту систему отсчета Ц-системой. По закону сохранения импульса сумма импульсов обеих образовавшихся после распада частиц в Ц-системе равна нулю, т.е. импульсы частиц равны по модулю и направлены в противоположные стороны Модуль импульса каждой частицы определяется из закона сохранения энергии:

(2.4 1)

где и - массы образовавшихся частиц,и - их внутренние энергии, - внутренняя энергия исходной частицы. Тогда энергия распада

. (2.4 2)

Распад возможен при ε>0. Из (2.4 1) и (2.4 2) находим:

(2.4 3)

где - приведенная масса образовавшихся частиц. Скорости частиц после распада в Ц-системе: и .

Перейдем к системе отсчета, в которой первичная частица движется до распада со скоростью . Эту систему отсчета обычно называют лабораторной системой (JI-системой). Пусть скорость одной из частиц после распада в JI-системе равна , а в Ц-системе равна . Тогда

или ; (2.4 4), , (2.4 5)

где - угол выпета частицы по отношению к направлению скорости . Зависимость скорости распадной частицы от направления ее вылета в JI-системе может быть представлена с помощью диаграмм (рисунок 8).

A А

О О

Рисунок 8.

Из рисунка 8 видно, что причастица может вылететь под любым углом ; при - только вперед под углом, где

. (2.4 6)

Легко установить связь между углами вылета в JI-системе и в Ц-системе:

, (2.4 7)

причем если при каждому значению соответствует одно значение, то при каждому значению соответствует два значения (за исключением случая).

Перейдем к изучению столкновений частиц. Задача о неупругом столкновении двух частиц обратна задаче о распаде частицы на две, рассмотренной выше. В Ц-системе справедливо выражение (2.4 1), а величина в этом случае равна приращению внутренней энергии составной частицы, образовавшейся в результате неупругого столкновения.

Рассмотрим задачу об упругом столкновении двух частиц, при котором не изменяется их внутреннее состояние. Как известно, в JI-системе скорость центра масс двух частиц с массами и скоростями и определяется выражением:

. (2.4 8)

К-во Просмотров: 279
Бесплатно скачать Курсовая работа: Векторные многоугольники в физических задачах