Курсовая работа: Векторные многоугольники в физических задачах

Решение задач служит простым, удобным и эффективным способом проверки и систематизации знаний, умений; позволяет в наиболее рациональной форме проводить повторение ранее изученного материала, расширение и углубление знаний, осуществлять действенную связь преподавания физики с обучением математике, химии, черчению и другим учебным предметам.

1.3 Традиционный способ решения задач кинематики и динамики в школьном курсе физики

Векторная запись многих уравнений физики более полно отображает соответствующие процессы и является более простой и компактной, поэтому она нашла свое применение в современном школьном курсе механики (пример тому - векторная форма записи законов и формул динамики). Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет ее успешное решение. Однако, в процессе решения задач кинематики и динамики используют обычно проекции векторов (координатный способ).

В методической литературе по вузовскому курсу общей физике рекомендуется придерживаться следующего плана решения задачи кинематики:

1) рационально выбрать систему отсчета с указанием начала отсчета времени и обозначить на схематическом чертеже все кинематические характеристики движения (перемещение материальной точки за рассматриваемый промежуток времени, мгновенную скорость в конце и начале перемещения, ускорение и время);

2) записать кинематические законы движения для каждого из движущихся тел в векторной форме;

3) спроецировать векторные величины на координатные оси и проверить, является ли полученная система уравнений полной;

4) используя кинематические связи, геометрические соотношения и специальные условия, данные в задаче, составить недостающие уравнения;

5) решить полученную систему уравнений относительно неизвестных;

6) перевести все заданные величины в одну систему единиц и вычислить искомые величины;

7) проанализировать результат и проверить его размерность.

При решении задач в школьном курсе физики также приемлем данный алгоритм, причем в большинстве случаев пункт 2 опускается, и сразу записываются скалярные уравнения, включающие проекции рассматриваемых в задаче векторных величин.

Для решения задач по динамике общий алгоритм следующий:

1) выяснить, с какими телами взаимодействует движущееся тело, и, сделав схематический чертеж, заменить действие этих тел силами;

2) записать уравнение движения (второй закон Ньютона) в векторной форме;

3) спроецировать векторные величины на координатные оси (значительно облегчает решение задачи рациональный выбор расположения начала координат и направлений координатных осей);

4) если полученная система уравнений не является полной, составить недостающие уравнения, используя третий закон Ньютона, законы трения или законы кинематики;

5) решить полученную систему уравнений относительно неизвестных в общем виде и проверить размерность искомой величины;

6) сделать численные расчеты, проанализировать полученные результаты.

Если в задаче рассматривается движение нескольких тел, необходимо записать второй закон для каждого из них и учесть кинематические и динамические связи между ними (например, равенство ускорений тел, жестко связанных между собой, равенство сил действия и противодействия и т.д.).

При анализе задач и составлении уравнений, описывающих физические процессы и явления нужно хорошо знать, какие из величин, входящие в формулы физики, являются скалярными, а какие векторными.

Как видно из приведенных алгоритмов решения задач по кинематике и динамике, для вычислений чаще всего используют соответствующие уравнения в проекции на оси координат, поэтому возникает необходимость обучить учащихся преобразованию векторного уравнения в уравнения для проекций, т.е. прежде всего, выработать у них умение определять проекцию вектора на ось. Для этого полезно следующее алгоритмическое предписание:

1) изобразить вектор графически в избранном масштабе; указать на рисунке начало координат и координатную ось;

2) спроецировать на ось начальную и конечную точки вектора;

3) найти длину отрезка между проекциями этих точек на ось; если можно, выразить длину отрезка через модуль вектора;

4) обозначить наименьший угол между положительным направлением оси и направлением вектора; определить этот угол;

5) если указанный угол острый, то приписать проекции знак “+", если нет, то приписать проекции знак “-".

6) записать проекцию вектора: длину отрезка, определенную в п.3, со знаком, установленным в п.5 (или: вычислить проекцию вектора по формуле ax = |a|×cosa, если известен |a|).

Таким образом, при решении задач школьного курса по кинематике и динамике применяется координатный способ, предполагающий использование, по крайней мере, двух алгоритмов.

Предлагаемый в последующих разделах данной работы векторный (геометрический) способ решения в ряде случаев имеет преимущество перед координатным. Решение задач с использованием векторного способа предполагает построение векторных многоугольников скоростей, перемещений, ускорений, сил, импульсов. Решение векторных многоугольников (т.е. таких, сторонами которых являются векторы) производится по тем же правилам, что и решение обычных многоугольников. При этом, если получившаяся при построении фигура является косоугольным треугольником, ее решение сводится к применению теоремы синусов и теоремы косинусов. Если же треугольник получается прямоугольным, решение упрощается (используются соотношения сторон и углов прямоугольного треугольника, теорема Пифагора). Таким образом, при применении векторных многоугольников для решения некоторых задач механики отпадает необходимость в проекцировании векторных величин на оси координат, чем, в первую очередь, и упрощается решение конкретной задачи.

2. О векторных способах решения задач механики

2.1 Векторные треугольники скоростей и перемещений в задачах

К-во Просмотров: 281
Бесплатно скачать Курсовая работа: Векторные многоугольники в физических задачах