Курсовая работа: Викладення теми Трикутники по програмі курсу геометрії в 7 класі середньої школи
Рис.2.1 До теореми 2.1 (ознака рівності трикутників по двох сторонах і куту між ними) [8]
Доведення.
Нехай у трикутників й - дві сторони та кут між ними рівні: (див. рис.2.1). Доведемо, що трикутники рівні.
Нехай - трикутник, дорівнює трикутнику , з вершиною на промені й вершиною в тій же напівплощині відносно прямій , де лежить вершина (рисунок 2.2, а).
Рис.2.2, а) До доведення 1 признаку рівності трикутників [8]
Тому що , то вершина збігається з вершиною (див. рис.2.2, б).
Рис.2.2, б) До доведення 1 признаку рівності трикутників [8]
Тому що то промінь збігається із променем
(див. рис.2.2, в).
Рис. .2.2, в) До доведення 1 признаку рівності трикутників [8]
Тому що =, то вершина збігається з вершиною (рис.2.2, г).
Рис.2.2, г) До доведення 1 признаку рівності трикутників [8]
Отже, трикутник збігається із трикутником , виходить, дорівнює трикутнику .
Теорема доведена.
Теорема 2.2 (Друга ознака рівності трикутників по стороні й прилеглим до неї кутам).
Якщо сторона й прилеглі до неї кути одного трикутника рівні відповідно стороні й прилеглим до неї кутам іншого трикутника, то такі трикутники рівні.
Доведення.
Нехай і - два трикутники, у яких
(рисунок 2.3).
Рис.2.3 До доведення 2ї ознаки рівності трикутників [8]
Доведемо, що трикутники рівні. Ð
Нехай - трикутник, дорівнює трикутнику з вершиною на промені й вершиною в тій же напівплощині відносно прямій , де лежить вершина .
Тому що , то вершина збігається з вершиною . Тому що й , то промінь збігається із променем , а промінь збігається із променем . Звідси витікає, що вершина збігається з вершиною .
Отже, трикутник збігається із трикутником , а виходить, дорівнює трикутнику .