Курсовая работа: Вивчення систем, еквівалентних системам з відомим типом крапок спокою

Функція U (t, x), U: G R, являє собою перший інтеграл системи (1) тоді й тільки тоді, коли похідна U у силу системи (1) тотожно в G звертається в нуль.

Необхідність. Нехай U (t, x) є перший інтеграл системи (1). Тоді для будь-якого рішення x (t) цієї системи, застосовуючи лему 1 будемо мати тотожності

U

Звідки при t=t одержимо рівність U (t справедливе при всіх значеннях t і x (t). Необхідність доведена.

Достатність. Нехай тепер U при всіх (t, x) Тоді для будь-якого рішення x (t) системи (1) на підставі леми 1 будемо мати тотожності

а з ним і достатність.

З визначення першого інтеграла треба, що постійна на G функція також є першим інтегралом системи (1). Перший інтеграл U (t, x) будемо називати на G, якщо при всіх (t, x) виконується нерівність.

Функцію U (x) будемо називати стаціонарним першим інтегралом системи (1), якщо вона не залежить від t і є першим інтегралом системи (1).

Знайдемо перший інтеграл нашої системи:

Піднесемо до квадрата й виразимо з

y

Покладемо , одержимо

Перевіримо, що функція - це перший інтеграл системи (1), тобто перевіримо виконання тотожності (2)

Знайдемо похідні по t, x, y

К-во Просмотров: 175
Бесплатно скачать Курсовая работа: Вивчення систем, еквівалентних системам з відомим типом крапок спокою