Курсовая работа: Зонна теорія електропровідності напівпровідників

Якщо ввести позначення для потенційної енергії електрона в кристалі через функцію V (г), рівну: , то рівняння Шредінгера для електрона кристала запишеться у вигляді:

(3.7)

Отже, стаціонарна хвилева функція електрона в періодичному полі кристала залежить від хвильового вектора до і має вигляд:

(3.8)

де є плоскою хвилею, що біжить у напрямі вектора k, а U(r) - деяка функція координат, залежна від хвильового вектора k і має періодичність кристалічної гратки. Вираз для носить назву хвилі (або функції) Блоха.

Якщо функцію Блоха підставити в рівняння, то матимемо:

(3.9)

З рівності виходить, що енергія електрона в кристалі повинна залежати від хвилевого вектора до, тобто Е = Е (k).

Отже, вирішенням рівняння Шредінгера для електрона в періодичному полі кристала є плоска хвиля, що біжить, модулюється з періодичністю решітки, а енергія електрона залежить від хвилевого вектора k.

Якби отримані результати на основі введення самоузгодженого поля залежали від чисельного значення потенціалу періодичного поля V (г), то в даний час, мабуть, не існувало б такої теорії твердого тіла, оскільки поля ці невідомі і не можуть бути визначені ні теоретично, ні експериментально. Проте для того, щоб отримати фундаментальні результати теорії, немає необхідності знати чисельні значення силових полів, достатньо лише знати, що це поле періодичне в просторі і що його періоди співпадають з періодами решітки.

Розглянемо, що відбувається з енергетичними рівнями при взаємодії великого числа атомів, утворюючих кристал. Рівні енергії внутрішніх електронів, розташованих ближче до ядра, при цьому майже не змінюються. Про це можна судити по рентгенівських характеристичних спектрах, вид яких майже не залежить від сполуки або агрегатного стану речовини. Проте оптичний спектр, обумовлений переходом самих зовнішніх еквівалентних електронів, різко змінюється.

Якщо вважати, що кінетична енергія електронів значно більше просторових змін його потенційній енергії, то періодичний потенціал V (r)можна розглядати як мале збурення вільного руху електронів. Такий підхід, що отримав назву наближення майже вільних електронів, дає більш менш задовільні результати при вирішенні деяких завдань для металів.

Аналіз фізичних властивостей напівпровідників наочніший в наближенні сильно зв'язаних електронів, в якому вважають, що розміщення електрона в кристалі мало відрізняється від розміщення його в ізольованому атомі. Але такий підхід застосовний тільки для електронів, що знаходяться на глибоких енергетичних рівнях атомів, тобто він застосовний для електронів, які слабо взаємодіють з атомами інших вузлів гратки. Тому наближення ні слабо, ні сильно зв'язаних електронів не дозволяють кількісно описати розміщення валентних електронів в кристалі. Іншими словами, ці наближення не можуть бути використані для кількісних розрахунків енергетичного спектру електронів конкретної речовини, але вони добре ілюструють загальні закономірності руху електрона в періодичному полі кристала. Тому хвилеву функцію електрона в кристалі можна представити у вигляді лінійної комбінації атомних хвилевих функцій :

(3.10)

Тому вираз для енергії електрона в періодичному полі простої кубічної решітки прийме вигляд:

(3.11)

Аналіз даного виразу дозволяє зробити ряд висновків щодо енергетичного спектру електронів в кристалах.

1. Рівень Еα ізольованого атома при утворенні кристалічної решітки в результаті взаємодії атомів зміщується на величину С. Направлення зміщення рівня залежить від знаку величини С.

2. Атомний рівень в кристалічній решітці розщеплюється в смугу або зону, усередині якої енергія електрона періодично залежить від компонент хвильового вектора k .

3. Екстремальне значення виразу, яке має місце при coski a= ± 1(i =x, y, z), будуть

Емакс =Ea + C + 6A;

Емін =Ea + C- 6A.

Отже, для простої кубічної решітки ширина енергетичної зони рівна:

Емакс - Емін = 12А, тобто залежить від величини обмінного інтеграла.

4. Кожен енергетичний рівень ізольованого атома в кристалі розщеплюється в зону. Оскільки величина обмінного інтеграла визначається перекриттям електронних хмар сусідніх атомів, то, чим сильніше перекриваються хвильові функції атомів, тим більше величина А а, отже, і ширина енергетичної зони. Через це для вищих атомних рівнів із-за більшого перекриття хвильових функцій утворюється ширша енергетична зона (мал. 2-3).

5. Енергетичні зони в загальному випадку розділені забороненими інтервалами енергії Eg , званими забороненими зонами (рис. 3.1).

6. Із зростанням енергії ширина енергетичних зон збільшується, а ширина заборонених зон зменшується (рис. 3.1).

7. Рівень Еа в ізольованому атомі може бути виродженим. У кристалічній решітці виродження може бути часткове або повне. При цьому атомний рівень розщеплюється на декілька зон, число яких відповідає ступеню виродження. Наприклад, для р - стану чинник звиродніння g = 3, оскільки g = 2І +1, де І – азимутне квантове число, яке для р - стану дорівнює 1. Отже, з атомного р - стану в кристалі можливе утворення трьох зон.

8. Енергія електрона в кристалі залежить від компонент хвильового вектора k. Вона є парною функцією хвильового вектора k, тобто

К-во Просмотров: 283
Бесплатно скачать Курсовая работа: Зонна теорія електропровідності напівпровідників