Курсовая работа: Зонна теорія електропровідності напівпровідників
9. При дії на кристал температури і тиску, що приводять до зміни відстані між атомами, буде змінюватися область перекриття хвильових функцій і, отже, величина обмінного інтеграла. Це викличе зміну ширини енергетичних зон, в результаті зміниться і ширина забороненої зони між цими зонами.
Рис.3.1. Утворення зон енергії з енергетичних рівнів при зближенні атомів, а – постійна гратки кристала.
10. Метод сильного зв'язку непридатний до зовнішніх валентних, електронам атомів кристалів, оскільки із-за великого перекриття хвильових функцій сусідніх атомів ширина енергетичної зони валентних електронів приблизно дорівнює відстані між рівнями енергії в ізольованому атомі або перевищує їх.
Розділ 4. Зони Бріллюена
При зміні хвильового вектора від 0 до π/а енергія електрона зростає неперервно, при виникає перший розрив. Дала енергія знов зростає неперервно, але при знов виникає наступний розрив.
Області значень хвильового вектора при якому енергія електрона змінюється неперервно називають зонами Бріллюєна.
4.1. Поняття про зони Бріллюена
В енергетичній зоні кристала є N енергетичних станів, яким відповідають значення компонент хвильового вектора:
(4.1)
і компонент квазіімпульсу
(4.2)
Деi =x, y, z, а j = 1, 2, 3.
Значенням квазіімпульсу в системі координат (рх , ру , рz ) відповідатиме деяка область, побудована навколо початку координат і що містить всі можливі різноманітні стани. Ця область називається першою, або основною, зоною Брілюєна. Для кристала з простий кубічною граткою перша зона Брілюєна є кубом (рис. 4.1, а) об'ємом:
(4.3)
Рис. 4.1 Перша зона Брілюєна для кристала з простою кубічною решіткою (а), кубічною об’ємноцентрованою (б), кубічною гранецентрованою решітками (в).
Оскільки об'єм першої зони Бріллюена для кристала з простими кубічними гратками дорівнює (h/а)3 , а об'єм елементарної комірки h3 /a3 N, то число елементарних комірок в ній складає N, тобто рівне кількості енергетичних станів в зоні. Але в енергетичній зоні може розташовуватися 2N електронів, отже, і в першій зоні Брілюєна може бути 2N електронів, а в її кожній комірці може знаходитися тільки два електрони з протилежно направленими спінами.
Друга і наступні зони Бріллюена, які відповідають відповідно другій і наступним енергетичним зонам, мають складнішу конфігурацію, але їх об'єм залишається постійним. Вони також містять N елементарних комірок, кожну з яких можна надати у відповідність комірку в першій зоні, що описує еквівалентний стан.
4.2. Приведені зони
Операція побудови всіх енергетичних зон в межах першої зони, називається приведенням зон до першої зони, а самі зони, побудовані таким чином, називаються приведеними зонами. Приведення зон полягає в зсуві по осі енергій ділянок кривої E(k), що відносяться до різних зон, на відрізки, кратні 2π/а. На рис. 4.4 пунктиром показана 2-а, 3-а і частково 4-а приведені зони, горизонтальними стрілками – напрям зсуву при побудови цих зон, в розривах стрілок вказана величина зсуву. З рисунка видно, що у всіх непарних приведених зон в центрі розташовуються мінімуми, а на межах зон максимуми; у парних зон, навпаки, в центрі розташовуються максимуми, на межах – мінімуми.
Мал. 4.4. Перекриття енергетичних зон.
а) дозволені зони накладаються на заборонені; б) заборонені зони для різних напрямків кристалів накладаються одна на одну, утворюючи абсолютно заборонену зону для кристала в цілому.
Аналогічним чином будуються приведені зони для тривимірних кристалів. Оскільки періодичність решіток в тривимірному кристалі у різних напрямах може бути різною, то значення k, при яких настає бреггівське відбиття і виникають розриви в енергетичному спектрі електрона, будуть також різними: для напряму, уздовж якого періодичність решітки рівна а, розриви настають при , для напряму з періодичністю b– при, для напряму з періодичністю с – при і так далі. Внаслідок цього область енергій, заборонена для певних напрямів, може перекриватися областями дозволених енергій для інших напрямів (рис. 4.4,а) і енергетичний спектр в цілому виявиться безперервним. Тільки у тому випадку, коли області заборонених енергій для всіх напрямів накладаються один на одного (рис. 4.4,б), в кристалі існуватимуть абсолютно заборонені області енергій і його енергетичний спектр збереже зонний характер.
4.3. Ефективна маса електрона
Розглянемо рух електрона в кристалі під дією зовнішнього поля напруженості Е. Поле діє на електрон із силою F = eE . У випадкуцілком вільного електрона ця сила є єдиною. На електрон, який перебуває в кристалі, крім неї діє періодичне поле решітки. Тому рух електрона в кристалі виявляється значно більше складним, чим рух вільного електрона в потенційному ящику. Один з способів опису цього руху полягають у наступному. Швидкість руху електрона в кристалі дорівнює груповій швидкості поширення електронних хвиль і визначається формулою i
(4.10)
За час dt зовнішня сила F виконує роботу з переміщення електрона, чисельно рівну: (4.11)
Диференціюючи по часу визначимо прискорення електрона:
(3.12)
(3.13)
Формула (3.13) встановлює зв'язок між прискоренням електрона й зовнішньою силою, що діє на нього з боку зовнішнього електричного поля Е. Вона виражає, отже, другий закон Ньютона. Із цієї формули видно, що під дією зовнішньої сили F електрон у періодичному полі кристала рухається в середньому так, як рухався б під дією цієї сили вільний електрон, якби він мав масу: