Курсовая работа: Зонна теорія електропровідності напівпровідників

Маса називається ефективною масою електрона. Приписуючи електрону, що перебуває в періодичному полі кристала, масу , ми можемо вважати цей електрон вільним таописувати його рух у зовнішнім полі так, як описується рух звичайного вільного електрона. До речі, для вільного електрона, для якого , формула (3.14) дає: що, потрібно було очікувати.

Необхідно підкреслити, що введення поняття ефективної маси є лише зручним способом опису поводження електрона в періодичному полі кристала. Сама ж ефективна маса не є масою у звичайному змісті слова. Вона не визначає ні гравітаційних, ні інерційних властивостей електрона. По величині вона може бути як більше, так я менше маси вільного електрона, за знаком – як позитивною, так і негативною.

4.4. Енергетична будова алмазоподібних напівпровідників.

Кремній і германій мають кристалічну структуру типу алмаза, що представляє собою дві гранецентровані кубічні решітки, зміщені одна щодо іншої на 1/4 просторової діагоналі. Елементарний осередок містить два атоми. Для них перша зона Брілюєна не є кубом, а має форму чотирнадцятигранника, зображеного на рисунку 4.5, де значення складових хвильового вектора дані в одиницях 2п/а (а - ребро куба решітки).

Розрахунок зонної структури напівпровідників являє собою складне завдання. Для германія й кремнію залежність Е (к) для довільно обраної точки к є рівнянням 146-й ступеня. Тому енергія була обчислена лише для деяких симетрично розташованих точок зони Брілюєна, для яких розрахунок сильно спрощується. Але й при цьому довелося чисельно розв’язувати рівняння 16-й степені. Дані для проміжних точок у зоні Брілюєна були отримані інтерполяцією. Результати теоретичних розрахунків уточнювалися порівнянням із даними експериментів, зокрема по циклотронному резонансу.

Рис. 4.5. перша зона Брілюєна для напівпровідника типу алмазу.

У атома кремнію є 14 електронів, а в атома германія – 32 електрона, які розподілені по зонах Брілюєна наступним чином:

Si1s2 2s26 3s22

Ge1s2 2s26 3s26 d410 S 2 4p2

У них остання оболонка не заповнена, у ній у р – стані є два електрони з паралельними спинами. Оскільки зона провідності й валентна зона кремнію й германія включають р - стан, для якого в кристалі виродження знімається, то кожна з них являє собою накладення трьох різних зон. На рис. 4.6 вони представлені трьома вітками Е(к). Ця залежність неоднакова для різних кристалографічних напрямків.

Рис. 4.6. енергетична структура германію та кремнію. Еg – ширина забороненої зони, знаком «+» зображено дірки в валентній зоні, знаком «-» електрони в зоні провідності.

Одна з галузей Е (к) зони провідності як у кремнію, так й у германію (рис. 4.6) лежить значно нижче інших. Положення абсолютного мінімуму енергії визначає дно зони провідності. Мінімуми енергії називають також долинами.

Абсолютний мінімум зони провідності в германію розташований у напрямку осей 11111 (рис. 4.6), тому є вісім еквівалентних мінімумів енергії, координати яких в одиницях2к/а мають вигляд (1/2, 1/2, 1/2) і лежать на границі зони Бріллюєна (на рис. 4.6 вони показані жирною точкою). Ізоенергетичні поверхні поблизу абсолютних мінімумів енергії (або долин) являють собою еліпсоїди обертання відносно великої напівосі. І на першу зону Брілюєна припадає половина кожного еліпсоїда енергії, а отже, у германію є не вісім, а тільки чотири повних еліпсоїди енергії (рис. 4.7).

Абсолютний мінімум зони провідності в кремнію лежить у напрямку осей (1001) неподалік від границі зони Брілюєна (рис. 4.6). Тому в кремнію є шість еквівалентних мінімумів анергії, а отже, у кремнію на першу зону Брілюєна доводиться шість еліпсоїдних поверхонь постійної енергії, витягнутих уздовж осей 11001 (рис. 4.6). Центри еліпсоїдів розташовані на відстані трьох чвертей від центра зони Брілюєна.

Рис. 4.7. Форми поверхонь постійної енергії в зонах провідності германію та кремнію.

Залежність енергії від хвильового вектора k до поблизу абсолютних мінімумів зони провідності в германії й кремнії виражається формулою

Мінімальна відстань між дном зони провідності й вершиною валентної зони називається шириною забороненої зони. У кремнію й германію екстремуми енергії електронів і дірок лежать у різних точках зони Брілюєна (рис. 4.7). При кімнатній температурі й нормальному атмосферному тиску ширина забороненої зони в германію достатньо високого ступеня чистоти дорівнює 0,67 еВ, у кремнію вона становить 1,11 еВ.

Розділ. 5. Заповнення зон електронами та електричні властивості напівпровідників

Кожна енергетична зона містить, як ми вияснили, обмежене число енергетичних рівнів. Відповідно до принципу Паулі на кожному рівні може розміститися не більше двох електронів. При обмеженому числі електронів, що утримуються у твердому тілі, заповненими виявляться лише декілька найбільш низьких енергетичних зон.

По характеру заповнення зон електронами всі тіла можна розділити на дві великі групи.

1. До першої групи відносять тіла, у яких над цілком заповненими зонами розташовується зона, заповнена лише частково (рис. 5.1,а). Така зона виникає в тому випадку, коли атомний рівень, з якого вона утвориться, заповнений в атомі лише частково. Типовим прикладом цьому можуть служити лужні метали. У натрію, наприклад, що має електронну конфігурацію
11 Nals2 s2 p6 3s1 , на рівні 3s перебуває один електрон, у той час як для заповнення цього рівня необхідно два електрони. Тому зона 3s, що утвориться із рівня 3s, виявляється заповненою лише наполовину.

Частково заповнена зона може виникати й внаслідок накладення заповнених зон на порожні або частково заповнені зони, як це має місце в лужноземельних металів (мал. 5.1,б). Наявність зони, заповненої електронами лише частково, характерно для металів.

Рис. 5.1. Зонна структура твердих тіл.

2. До другої групи відносять тіла, у яких над цілком заповненими зонами розташовуються порожнізони (мал. 5.15,в). Типовим прикладом твердих тіл із таким характером заповнення зон є елементарні напівпровідники IV групи таблиці Менделєєва: алмаз, кремній, германій. Як уже вказувалося раніше, валентна зона цих елементів, що містить чотири стани на атом, заповнена чотирма валентними електронами, у той час як зона провідності, що містить також чотири стани на атом, виявляється зовсім порожньою.

До цієї ж групи твердих тіл ставляться й багато хімічних сполук. Всі вони є або напівпровідниками або діелектриками.

Відповідно до зонної теорії твердих тіл електрони зовнішніх енергетичних зон мають практично однакову свободу руху у всіх тілах, незалежно від того, є вони металами або напівпровідниками (діелектриками). У відсутності зовнішнього поля цей рух не може, однак, привести до виникнення електричного струму, тому що розподіл електронів по швидкостях є симетричним. Це означає, що якщо в кристалі вибрати електрон, що рухається з даною швидкістю в даному напрямку, то обов'язково знайдеться інший електрон, що має швидкість таку ж по величині, але протилежну по напрямку.

К-во Просмотров: 285
Бесплатно скачать Курсовая работа: Зонна теорія електропровідності напівпровідників