Курсовая работа: Зонна теорія електропровідності напівпровідників
Вступ.
Розділ 1. Поняття напівпровідників.
Розділ 2. Рівняння Шредінгера для кристала.
Розділ 3. Зонний характер енергетичних спектрів електронів в кристалі. Адіабатичне та одноелектронне наближення.Наближення сильнозв’язанихелектронів.
Розділ 4. Зони Бріллюена.
4.1. Поняття про зони Бріллюена.
4.2. Приведені зони.
4.3. Ефективна маса електрона.
4.4. Енергетична будова алмазоподібних напівпровідників.
Розділ. 5. Заповнення зон електронами та електричні властивості напівпровідників.
Розділ 6. Діркова провідність напівпровідників.
Розділ 7. Домішкові рівні у напівпровідниках.
7.1. Донорні рівні.
7.2. Акцепторні рівні.
7.3. Рівні прилипання.
6.4. Глибокі домішкові рівні.
Висновки.
Список використаної літератури.
Вступ
Сьогодні, коли виробництво напівпровідників стало окремою галуззю промисловості і сьогодні, коли напівпровідники все в більшій мірі визначають рівень прогресу в таких галузях як радіоелектроніка, обчислювальна техніка, зв'язок, автоматизація виробництва, знання фізики напівпровідників стає потребою не тільки фахівців у даній галузі, але і більш широкого кола людей. Вимоги промисловості та техніки стимулюють у наш час розвиток науки і фізики напівпровідників зокрема. За п’ятдесят років свого розвитку фізика напівпровідників та промисловість із нею пов’язана, пройшла великий шлях, від перших діодів до мікросхем. У мікросхемі 1965 року випуску було 30 транзисторів, тоді як сьогодні чип RadeonHD 3870 містить 660 мільйонів транзисторів.
Для створення напівпровідникових виробів потрібно мати розвинуту промисловість, адже потрібно виготовляти чисті кристали кремнію та германію, вміст домішок у яких буде надзвичайно малим ( до 10-10 ). Довгий час це було неможливо. Потрібно вміти вводити в кристали кремнію точно дозовані кількості домішок, тощо. Але все це було б неможливим без знання внутрішньої будови напівпровідників. Фізика напівпровідників саме і вивчає будову напівпровідників, вона встановила певні агальні принципи їх функціонування, тощо.
Завданням даної роботи буде встановити внутрішню будову напівпровідників та пояснити на основі внутрішньої будови їх властивості.
Розділ 1. Поняття напівпровідників
Всі речовини в природі по електрофізичних властивостях можуть бути розділені на три великі класи: метали, напівпровідники і діелектрики. Найпростіше, здавалося б, класифікувати речовини по питомому електричному опору. У металів він знаходиться в межах 10-6 – 10-4 Ом∙см (наприклад, питомий опір срібла при кімнатній температурі складає 1,58∙10-6 Ом∙см, сплав ніхром має питомий опір 1,05∙10-4 Ом∙см). Речовини з питомим опором від 10-4 до 1010 Ом∙см були віднесені до напівпровідників (наприклад, питомий опір сірчистого кадмію при кімнатній температурі залежно від технології його виготовлення лежить в межах від 10-3 до 1012 Ом∙см, а германію – від 10-4 до 47 Ом∙см). Нарешті, речовини з питомим опором більше 1010 Ом∙см вважаються діелектриками (наприклад, при 200°С питомий опір слюди залежно від її складу має 1013 – 1016 Ом∙см, скла – 10 8 – 1015 Ом∙см).
З наведених прикладів видно, що при переході від одного класу речовини до іншого значення питомого опору перекриваються. Тому питомий опір не може служити як однозначний критерій для класифікації речовин.Однак при знятті температурних залежностей питомого опору розходження між металами й напівпровідниками часто проявляється досить чітко.
Для напівпровідників характер температурної залежності питомого опору і провідності інший. Для деякого інтервалу температур ці залежності мають вигляд:
(1.1),
(1.3),
де - деякі постійні для даного інтервалу температур величини, характерні для кожної напівпровідникової речовини.
Такі залежності питомого опору і провідності від температури мають так звані не вироджені напівпровідники. Для них, як видно з графіка температурної залежності питомої провідності, наведеного на рисунку 1.1. характерна наявність позитивного температурного коефіцієнта питомої провідності, тобто:
>0, (1.3)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--