Лабораторная работа: Кривошипно-ползунный механизм, его структура, схема, анализ
Этот метод применяется для анализа движущихся механизмов при известных массах и моментах инерции звеньев.
Для этого разбиваем механизм на структурные группы Ассура и начинаем вычерчивать с последней группы звеньев (группы, связанной с выходным звеном).
Рисунок 6 – Структурная группа Ассура 1
Разорванную связь 1-2 заменяем реакцией R12 , раскладывая ее на составляющие и , а нормаль XX реакцией R03 . Составляем уравнение равновесия:
(31)
(32)
Уравнение равновесия (32) содержит три неизвестных , и , следовательно, его статическая неопределимость равна двум.
С целью раскрытия статической неопределимости найдем модуль.
Звено АВ:
(33)
В результате проведенных вычислений уравнение (32) содержит две неизвестных и , следовательно статическая неопределимость раскрыта полностью. Уравнение равновесия примет следующий вид:
(34)
Определение оставшихся неизвестных выполним с помощью плана сил. Для этого необходимо выбрать масштабный коэффициент плана сил:
(35)
Переведем в масштабный коэффициент оставшиеся силы:
(36)
По полученным величинам строим план сил в масштабном коэффициенте (рисунок 7).
По построенному плану сил определяем неизвестные , и :
(37)
Рассмотрим первичный механизм.
Направляем уравновешивающую силу перпендикулярно оси кривошипа, в противоположную сторону вращения оси кривошипа. Вектор выходит из подвижной точки кривошипа.
Составляем уравнение равновесия:
(38)
Составляем уравнение моментов сил относительно точки O:
(39)
Из уравнения (4.23) определяем :