Лабораторная работа: Парный регрессионный анализ
Следовательно, rxy = 0,103152553. Значит можно сделать вывод, что между х и у, то есть между постоянными расходами и объемом выпускаемой продукции не наблюдается никакой связи.
Рассчитаем коэффициент детерминации:
D = r2 xy * 100
D = 1,064044912%
Следовательно, величина постоянных расходов только на 1,064044912% объясняется величиной объема выпускаемой продукции.
2. Рассчитаем дисперсионное отношение Фишера:
, где n – число регионов
Следовательно, n = 36
F расч = 0,150568403
Найдем Fтабличное : k1 = m, m = 1(т.к. на y влияет только один фактор х),
k2 = n- m-1. Значит k1 = 1, k2 = 36-1-1= 34. Находим табличное значение F на пересечении k1 и k2. Получаем, что Fтабличное = 2,145.
Так как Fрасчетное < Fтабличное значит уравнение статистически не значимо.
3. Рассчитаем стандартные ошибки коэффициентов регрессии:
где
Для этого надо еще добавить в таблицу значения y - , (y - )2 , и рассчитать общую сумму по 36 регионам и их среднее значение.
При вычислении Sост было получено, что
Sост = 382,9325409.
Следовательно,
Sb1 = 27,7984546,
Sb0 = 918,3564058
4. Рассчитаем доверительные границы коэффициентов регрессии:
, где
tтабл находится по таблице t-критерия Стьюдента при уровне значимости 0,05 и числе степенной свободы равной 34.
Значит tтабл =2,145.
= 1969,87449
= 59,62768512
Следовательно, можно рассчитать доверительные границы коэффициентов регрессии: